The general expresion for composition of velocities is a*b = sqrt((a^2 + b^2 + 2ab cos(alpha)) - (ab sin(alpha))^2/c^2 ) /(1 + ab cos(alpha)/c^2), where alpha is the angle between the velocities a and b. If alpha=0, then the binary operator * reduces to a*b = (a + b) /(1 + ab/c^2) if alpha = pi/2, then a*b = sqrt(a^2 + b^2 - (ab)^2/c^2) if alpha = pi, then a*b = (a - b) /(1 - ab/c^2) Since the operator * is defined as a function of alpha, we see it is not unique. |
|
Fumble Index | Original post & context: 03295721-69ca-4910-bef8-31e4af9927e0@p69g2000hsa.googlegroups.com |