AUTOMATIC DETECTION OF BURIED CHANNEL DEPOSITS FROM DENSE LASER
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ABSTRACT:

The formation of the current Rhine-Meuse delta mainly took place duriedatst 12 000 years. Consecutive avulsions, i.e. sudden
changes in the course of river channels, resulted in a complicatedrpeftsandy channel deposits, surrounded by peat and clay.
Knowledge of this pattern is not only interesting from a geohistorical viémipbut is also essential when planning and maintaining
constructions like roads and dikes. Traditionally, ancient river charare traced using labor intensive soil drilling. Channel remains
can however also be recognized in polder landscapes by small locatiefechanges due to differential compaction. The purpose of
this research is to automatically map channel remains based on a stractisesis of available high resolution laser altimetry data.
After removing infrastructural elements from the laser data, local featectors are built, consisting of the attributes slope, curvature
and relative elevation. Using a maximum likelihood classifier, 75 million gdddser points are divided into two classes: buried
channel deposits and other. The results are validated against two tatarsexisting paleographic map and a set of shallow drilling
measurements from the same area. Validation shows that on one hanéwhisethod is strongly hampered by human intervention
in the traditional polder landscape, on the other hand it is shown that eelaiivng river bed remains (4 620 to 1 700 years Before
Present) to some extend can be mapped in a fully automatic way.

1 INTRODUCTION of field research using over 200 000 manual boreholes a paleo-
geographic map is composed, (Berendsen and Stouthamer, 2001),
During the Holocene (approximately 12 000 years - present)S€€ also Figurell, righ't. As the drillings req.uire a large amount
much of the western and central part of the Netherlands was a@f manual labor in the field, not the whole Rhine-Meuse delta has
grading, as active river systems (Rhine and Meuse) transportddfen cove_red |nth_e same amount ofdetall._AIso net_:essarlly some
sediments from the hinterland to the coastline. In combinatiofNt€rpretation and interpolation steps were involved in composing
with sea level rise this resulted in a Holocene sediment sequendB€ Map, which may have introduced local anomalies.
of up to 20 meter thickness. As river channels consist predomi:

nantly of sand while the adjacent floodplains were dominated b)l(‘lDAR data is being used more and more to reveal and high-

clay deposition and peat formation, a strong grain-size partition-'ght morphological and archaeological structures that are hardly

ing occurred. Furthermore, frequent shifts in channel locatio visible. In archaeology, LIDAR data has been used to reveal

due to avulsions, resulted in a complex subsurface of clay/pef% urial mounts, (Kakiuchi and Chikatsu, 2008), Celtic field sys-
dominated floodplain deposits laterally and vertically alternatingeean:ti‘w(grok%ﬁ';iraegd (I;\AﬂaaDsénZe(:J(DSSél:]-! du\rlnanr;erneetra;(l)gg)oﬁ)r; g(ragrtr?:rr-
with sand-rich channel areas, (Allen, 1965). phology, e.g. a spectral decomposition of the landscape signal as
aptured by airborne laser scanning can reveal small scale rough-
ess features, (Perron et al., 2008). Previous studies, (Berend-
n and Volleberg, 2007, Munstermann et al., 2008), showed that
so buried channel remains can be visualized using airborne laser

ata from the AHN (Actueel Hoogtebestand Nederland) data.

Currently, buried channel deposits are recognizable in the Ianc{’%
scape, basically due to a process called topographic inversiog
This occurs when the floodplain deposits on the sides of the burie
channels compact at a higher rate than the channel sand itse
At the surface this results in an area with a higher elevation a

the locations of buried channel deposits. Note that the sand rgp this research it is considered if it is possible to systematically
maining from an abandoned channel may not start directly at thg, a5 channel remains from second generation, high resolution
surface: channels abandoned relatlvel_y long ago may mean_whlllgHN_z data. In 2012 for every 50 cm grid point in The Nether-
haye be_en deeply covered by rooc!pIaln deposits. The maximumnqs a height value will be available with a precision of about 5
height differences between the buried channels and the surroungy, (AHN, 2000). As a test area the so-called Alblasserwaard is
ings are in the order of a meter for relative large and young chanyse, a polder of 350 kindirectly east of Rotterdam. The loca-
nel deposits. To some extent it holds that the thinner and oldefio, of this polder is indicated in the inset in Figure 5. For this

that is, deeper the channel deposits, the smaller also the heighbger, a test data set has been kindly made available by provider

difference. Fugro Aerial Mapping B.V. and owner Waterboard Rivierenland,

) o consisting of about 1.2 billion gridded points, see Figure 1, left.
Knowledge of the location of these channel remains is essen-

tial when planning and maintaining large construction works asFrom this data set points representing hard infrastructure are re-
motorways and dikes, (Munstermann et al., 2008). Abrupt angnoved in a filter procedure incorporating the Dutch topographic
unidentified changes in the subsurface may lead to unexpectdshse map GBKN. Remaining points are classified according to
differences in compaction, which may lead again to damaged ofour structural attributes into two classes, channel remain and non
uneven road surfaces or even to failing dikes. channel remain. In Section 2 this data filtering and classification

procedure is discussed. Results are validated in Section 3 us-
Traditionally, mapping of the shallow subsurface of the Rhine-ing the digital paleogeographic map and using drillings from the
Meuse delta is based on soil drillings. A large effort has beerDutch geological database DINOLoket. The paper finishes with
made by Dutch Utrecht University: Based on more than 25 yearsonclusions and recommendations.
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Figure 1: Alblasserwaard.eft: Laser altimetry dataRight: Paleogeographic map

2 LIDAR DATA FILTERING AND CLASSIFICATION better than 56 cm in rural areas. The GBKN has a spaghetti-
structure: it only contains classified nodes and edges, for in-
In this section methodology is described aiming at the classifiStance road sides, water edges and building contours. Therefore
cation of airborne laser altimetry points into two classes, buriedhe GBKN map of the Alblasserwaard has to be converted to an
channel and non-buried channel deposits. A main challenge i@ map, consisting of classified segments, see Figure 2, left and
this research is the huge amount of input points. As the input datdiddle. This area map will then be applied as a mask to remove
strongly influences the methodology, these are described firsH10se laser points that are in a polygonal segment from an un-
Then it is described how laser points representing hard infragvanted class, like ‘road".

tructure are removed before describing the actual classification . )
method. To create segments, the GBKN lines have to be automatically

connected and converted into classified segments. However, there
are errors in the database: lines sometimes do not connect exactly
or lines intersect without a node. Such situations have to be iden-
tified and adapted. Lines in the GBKN that do not exactly connect
are attached to the nearest line or node within a certain distance
threshold in a snapping procedure. Here a threshold of 10 cm
. - ) s used. Self intersections without nodes are removed by adding
1, left. The data was acquired during three days in August 2003nodes to the intersection points. Around the resulting area mask,

: L ) . : 5
‘;Vé?u?a?m(;?:r;np?ém gﬁ] rt]sigec’fogrtgg'?ésbgeé ?r:hlig?ic::wui;erawan additional buffer of 3m is added to further limit the influence
data. F y o deri gd pD' ital S pf e Model DSM by removi of unwanted objects: for example, ground close to a road is of-
ata, Fugro derived a Digital surtac ( ) Y TEMOVINg ) disturbed, and cannot be considered as representative for the
non-terrain points. The DSM points were consecutively resam-_ " .~ . )
; S . O situation in a field.
pled to a 0.5m grid using inverse squared distance weighting. The

grri1dded da;la _ils organized in tiles of 2;’322 goo pl)ixels ?aﬁh' Terrain variability and density filter ~ Despite this filtering me-
where each tile represents an area or Lx 3 km. In tota_ the  thod unwanted features still remain in the LIDAR data, see Fig-
Alblasserwaard data set was divided into 273 of such tiles CONGyre 2 right, like for instance small trenches and other objects
sisting of about 1.2 billion points in total. Moreover, to decrease, ' !

) : not (yet) registered in the GBKN database. As fields are relative
computational efforts, the 50 cm grid data have been downsarrﬁ- (vey) reg
c

2.1 Data description

For this research FLI-MAP400 VS laser altimetry data is used
measured by Fugro Aerial Mapping BV for the Waterboard Riv-
ierenland. An overview of the entire data set is shown in Figur

led 2 d A It the i d for thi mooth, a variability filter is applied, that removes those LIDAR
pledtoa2m grid. As aresult, the input data set for this researc,;nis where the variance over the nine nearest neighbors exceeds
consists of roughly 75 million points.

0.10 nt. Finally, relatively isolated points are removed: a point
. ) ) is considered isolated if the point density in a surrounding<41
2.2 Removing non-field objects 41 grid point window is below 50 %.

In the gridded FLI-MAP data still objects like roads, trenches,2.3 Channel classification

buildings and water surfaces are present. If unaddressed these

objects complicate the detection of buried channel deposits. Thehe points remaining after the removal of non-field objects are
laser data is filtered in two steps with the purpose of only keepclassified into two classes by means of structural classification.
ing data representing fields. In the first step, non-field objects argor this purpose first structural attributes are determined at each
removed using a mask constructed from GBKN data, in the seqgrid point. As a result at each grid point a multi variate feature
ond step remaining unwanted objects are removed, based on thector is created that can be used as input for a standard remote
terrain variability. sensing classification method.

GBKN mask. The ‘Grootschalige Basiskaart van Nederland' Slope and curvature attributes At each remaining LIDAR point,
(GBKN) is the Large Scale Standard Map of The Netherlands anthe following four attributes are determined: slope, curvature,
is the most detailed and accurate digital topographical databasEP| and smoothed TPI. Slope is chosen as an attribute because
available in the Netherlands, (GBKN, 2009). It is scale-free,at both sides of a buried channel, the elevation is increasing with
but is comparable to paper maps with a scale between 1:100 amdspect to the surrounding field. To derive slope, a plane is fitted
1:5,000. The precision of a point in comparison to another poinby least squares to a suited squared neighborhood of a LIDAR
in the surrounding is better than 28 cm in suburban areas angoint. From the planar parameters, an estimation of the local



Figure 2: GBKN masH.eft: Original GBKN line dataMiddle: Final GBKN mask.Right: GBKN mask overlaid on LIDAR data.

slope is derived using Horn’s method, (Burrough and McDon-case the digital paleogeographic map, compare Figure 1, right.
nell, 1998). Curvature is chosen as an attribute because the terrdim Figure 3 the location of the training samples is shown. The
at an elevation caused by a buried channel is convex as it is Iesults of the classification were slightly cleaned using the mor-
cally protruding. Flat terrain has a mean curvature of zero, whilgphological operators ‘majority filter* and ‘conditional dilation’ to
convex terrain has positive mean curvature. Here an approximaemove small outlying classification results and fill small holes,
tion of mean curvature is derived from local partial derivativese.g. (Jain, 1989).

by locally fitting a second degree polynomial surface to a suited

squared neighborhood, see for more details (Besl and Jane, 1986)
and (Nahib, 1990). 3 RESULTS, VALIDATION AND DISCUSSION

To reduce the computational costs of the least squares adjudf] this section the results of the automatic classification of the Al-
ment involved in the S|ope and curvature determination‘ a downblasserwaard LIDAR data are presented, validated and discussed.
sampling strategy is applied. After an analysis of different downFil'St the visual validation results are discussed. Then two valida-
Samp”ng rates, in which S|0pe values obtained from a downlion methods based on soil drIIIIngS are described, together with
sampled data set where compared to slope values from the fufine results of the actual validations.
data set, it was decided to use only 10 % of the data using sys- ) o
tematic sampling in a 4% 49 grid points window around each 3-1 Visual validation
pixel In Figure 5 all LIDAR 2m grid pixels are shown in blue that
TPI and smoothed TPI attributes The Topographic Position Were classified as ‘buried chan_nel‘. Clearly some more or less
Index (TPI) is a measure of the elevation of a location compare§onnected channel structures in East-West direction are recog-
to the surrounding landscape, (Weiss, 2001). To compute th@lza_ble. Slmultaneou_sly, many thicker fra_gments clasglflepl as
TPI-value of a single pixel the difference between its elevationPuried channel” are visible. Based on a visual evaluation it is
and the average elevation of a neighborhood around that cell 0t directly obvious if these thicker fragments indeed correspond
calculated. Most frequently an annular neighborhood is used? channel remains. Also anomahes are visible in th_e classifica-
that is, all cells between a certain minimal and maximal distancd!On results: thin, straight lines appear at many locations and are
are used in the calculation. A positive TPI-value means that th&"ainly corresponding to terrain close to roads and ditches.
cell is higher than its surroundings (at the specified neighborhoog. . I o
igure 6 shows a zoom-in of the classification results, again in

size) while negative values mean it is lower. A TPI-value of zero | . d i data. Th in Fi 6
indicates that the cell either lies on a flat area or on a constarﬂ U€, Superimposed on areal Imagery data. 1he area in Figure

slope. The TPl is of course strongly dependent on the scale. HeFeoproximately corresponds to the red rectangle in Figure 5. This

TPI-values are computed using a minimal distance of 80 m ang"29¢ confirms that the classification is still influenced by in-
a maximal distance of 100 m. From the TPI-values also a fOurtﬁjrw;lstructure: The classification algorithm reports buried channels

attribute is determined, the smoothed TPI. This is just the mean
of the TPI values in a 4% 49 grid points window and helps to
distinguish between small and large scale topographic features.

e um o ane gy | LY
[ Palaeogeographic map

B Training sample: Non-Channel

B Training sample:

Maximum likelihood classification As a result of the struc-
tural attribute determination, at each grid point a 4D attribute
vector is given, consisting of slope, mean curvature, TPl and
smoothed TPI attribute values. The availability of these attribute
vectors allows us to apply standard classification techniques from
remote sensing. Here Maximum Likelihood classification is ap-
plied.

The Maximum Likelihood Classifier, (Gao, 2008), uses statis-
tics from class signatures to determine if a given pixel belongs
to a class. Each class signature is derived by manually selecting
small areas that are known to belong to a certain class. These
areas are called training samples. The training samples in this re-
search have been selected based on manual interpretation of the
height data and by looking at independent reference data, in thid-igure 3: Training samples used for the classification process.



near and at farmyards and along a small ditch which indicatediscarded is that sand layers can be present there due to other rea-
that the GBKN infrastructure database is not complete and thatons, like construction works. The analysis of all of the drillings

the filtering procedure should be further improved. in the eastern part is shown in Figure 4. This form of automatic
interpretation of drilling data is prone to errors. This means that
3.2 Drilling data description in this case the amount of correctly interpreted drillings is largely

unknown. Still Figure 4 clearly visualizes the spatial correlation
For this research two independent validation data sets based #hthe drilling classification results.
soil drillings are available. The first is a map product, the secon

set consist of a large amount of single drillings, interpreted by th
authors.

23.3 Validation results

Further visual validation is obtained by comparing the automati-

. . . . cally classified LIDAR points to the digital paleogeographic map
Digital paleogeographic map A digital paleogeographic map and to the classified DINO drillings. For this project this was

9f the complgte Rhine-Meuse delta during t.he Holocene.(incluq-done using the ESRI Flex viewer, (ESRI, 2009). This program
ing the locations of buried channel deposits) was published "lows internet users to simultaneously view within their normal

(Bert_end_se_n and Stogthamer, .2001).' The AIbIassz_erW{;\ard_ sec.t'%r;'owser the different spatial layers on available background im-
of this digital map, F!gure 1, right, is used as validation n this agery, just as within a GIS environment. A screen shot is shown
research. The map is based on more than 25 years of field " Figure 6. According to the digital paleogeographic map this

search using over 200 000 manual boreholes, 45 000 archaeologéure contains buried channel remains from three periods, com-

!cal flrldlnfgs antd L 220 ?d!gcalrbon datlng.s.t Tr;e malp IS stoFre are Figure 1, right. In red some relative old (6270-4621 yBP)
In vector format, €ach individual area consists of a polygon. 0and wide buried channels are visible, in orange another wide,

each area up to 12 different attributes are stored like channel sizg,. i o .
channel length, age, year of beginning, year of ending, etc. Thgnghtly younger (4620-3701 yBP) channel is given. while some

Eatively young (3700-1700 yBP) smaller channel remains are

age of the channels on the map are given in years Before Preseg own in yellow. The LIDAR data classified as channel remain

where the Present is defined as the year 1950. For this researﬁ blue) gives the best match with the orange channel, while
four main age categories are distinguished, indicated by differ: j

9 ; some matching results on the yellow channels are found as well.
ent colors in F'g.“"? L. _These periods have been manually Chos%ere seems to be hardly no correlation between the blue LIDAR
?hissegp%r;igc]ji distribution and amount of channels abandoned thannel remains, and the large and old red channels. Similarly the

' classified DINO drillings give good agreement over the orange
channel, while the DINO drillings give mixed responses over the
red channel. Many DINO drillings outside the areas classified
by any method as buried channel are indeed red, but also here

exceptions exist.

Table 1: Comparison classified LIDAR to selected map, in num-
ber of grid points.

Map with all channels
LIDAR channel 2777 458 4813187
non-channel | 18 439 011 52 375 00(
Map 4620-1700 yBP
LIDAR channel 1594 995 5994 5645
non-channel | 4235 750 66 579 157
channel non-channel

These observations are partly confirmed by the numeric compar-
ison over the region of Alblasserwaard as a whole. For back-
Figure 4: Classified DINO drillings. ground on classification terminology, the reader is referred to e.g.
(Gao, 2008). In Table 1, the confusion matrix of the LIDAR
DINO drillings  The DINO database contains data and infor- puried channel classification compared to the paleogeographic
mation of the subsurface of The Netherlands, (DINOLoket, 2000)map is given. The top matrix compares the LIDAR classifica-
The archive contains among others shallow boring measuremen{i$n to all buried channels shown in Figure 1, right; in the bottom
that are suitable to use as reference data for this research. Thgyatrix the comparison is restricted to those channels in the pale-
cover primarily the shallow subsurface and contain standardizeggeographic map that are dated between 4620 and 1700 yBP, i.e.
information about the type of sediments and their depth. In totathe yellow and orange channels in Figure 1, right. The overall
2 680 individual drillings were available for the Alblasserwaard. classification results show that the amount of agreement between
The eastern part has a high drilling density, in the western pathe paleogeographic map and the LIDAR classification is limited.
only a very limited number of drillings is available. Although the overall classification accuracy equals 76 %, kappa,
a measure of similarity without chance agreement, only equals
After importing the DINO data, each drilling was automatically x = 0.06. By removing the youngest and oldest channel class
analyzed to determine if the drilling was part of a buried channefrom the comparison, the amount of agreement improves to 87 %
deposit. This was done by applying a basic filter: search for sanglith an associated kappa valuerot= 0.21
layers that are cumulatively more than 3 meters in thickness in
the shallow subsurface between 3 and 12 meters. If more thafhere are several possible reasons for this lack of agreement.
3 meters of sand was found, the drilling was classified as burieéirst of all it should be noted that a condition for a high degree
channel deposits. In all other cases the drilling was classified asf agreement is that a buried channel remainder always results in
Non-buried channel deposits. The reason why the top 3 meters aeelocally higher elevation. Although there is strong evidence that
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Figure 5: Buried channel classification results. The red rectangl@sppately corresponds to the area of Figure 6. The inset shows
the location of the Alblasserwaard in The Netherlands.

this condition in general is fulfilled, it is not yet sufficiently clear, paleogeographic map, bottom, are given. Both the LIDAR re-
what buried channel characteristics result in what amount of locadult and the map have a comparable amount of correct and incor-
elevation setup. Other reasons originate in the processing of thect classifications (sum of each row). They do however differ in
available information. In the composition of the paleogeographidhe type of misclassification: in the LIDAR classification a rel-
map, errors are associated to the interpretation and interpolaticative large number of points were classified as non-channel that
of the used drillings. The classification of the LIDAR data is where channels according to to our automatic interpretation of the
strongly hampered by the presence of man-made objects and BINO drillings. Again this could be caused by currently present
further influenced by the chosen attributes and the scale on whidnfrastructure: many DINO drillings were obtained in the zones
they are determined and by the chosen classification method. classified as green, that is young, channel remains in the paleo-

) geographic map, Figure 1, right, where no reliable LIDAR height
The reason that the youngest, green, channels in the Paleoge@sts is available.

graphic map do not give a good comparison with the classified LI-

DAR data is simply that these channels either still exist at approx-

imately the same location or that buildings and roads are present 4 CONCLUSIONS AND RECOMMENDATIONS

along or on the remains. In both cases the LIDAR data for these

regions is simply filtered out in the data processing procedurein this work, an original approach for the detection of buried
The reason that the oldest channel remains are not well detectethannel remains from high resolution LIDAR data had been de-
by the LIDAR data is that probably these channel remains ar@cribed and validated. The first results indicate that to some ex-
located relatively deep, and therefore result in less topographiend it is possible to automatically determine the location of sand-
inversion and therefore less height difference. rich channel areas. The results of this large case study also demon-

_ ) N . ) strate that there are many assumptions/steps involved in both de-
Table 2: Comparison to classified DINO drillings, in number of riving the initial classification results and in validating these re-

drillings. sults. In future work, the impact of these assumptions on the final
DINO drillings results should be further investigated.
LIDAR channel 169 195
non-channel 719 1597 One such step is the applied method of classification. In the
Map channel 402 499 software used for this research (ArcGIS) it was not possible to
non-channel 486 1293 combine training samples from different tiles. Such combination
channel non-channel could have ruled out possible regional variations in class signa-

tures. Using more tiles and training samples from different loca-
tions and from in particular channels of different scale could lead
In Table 2 also the confusion matrices between the classifietb improved classification results. Comparison to the paleogeo-
DINO drillings and the classified LIDAR results, top, and the graphic map also indicates that the depth, age and probably also



Figure 6: Buried channel classification resullue: Automatic classification LIDAR dataRed, orange, yellow: classification
according to digital paleogeographic map, compare FigReld dots: DINO drillings classified as non-channé&yreen dots: DINO
drillings classified as channels.

size of the channel remains are parameters whose influence @eo, J., 2008. Digital Analysis of Remotely Sensed Imagery.

the relative elevation should be further investigated. The digitaMcGraw-Hill Professional.

paleogeographic map is derived based on an interpretation of a¢: . .

tual soil drillings and an interpolation step to connect identifiedEith}:(/'/\IV;lwsv(_) gt?l'(n.nl /ﬁ{ggﬁgg?e“/%?mE:ﬁéﬂf;asrﬁe_\ﬁ&l N:ggég;%.

channel locations to a braided network of channels. This last steoyemper 20, 2009. ' '

has not been implemented yet for our automatic buried channel

classification. Humme, A., Lindenbergh, R. and Sueur, C., 2006. Revealing
celtic fields from lidar data using kriging based filtering. In: Pro-

ceedings ISPRS Commission V Symposium, 'Image engineering
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