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ABSTRACT:

The formation of the current Rhine-Meuse delta mainly took place during the last 12 000 years. Consecutive avulsions, i.e. sudden
changes in the course of river channels, resulted in a complicated pattern of sandy channel deposits, surrounded by peat and clay.
Knowledge of this pattern is not only interesting from a geohistorical viewpoint, but is also essential when planning and maintaining
constructions like roads and dikes. Traditionally, ancient river channels are traced using labor intensive soil drilling. Channel remains
can however also be recognized in polder landscapes by small local elevation changes due to differential compaction. The purpose of
this research is to automatically map channel remains based on a structural analysis of available high resolution laser altimetry data.
After removing infrastructural elements from the laser data, local feature vectors are built, consisting of the attributes slope, curvature
and relative elevation. Using a maximum likelihood classifier, 75 million gridded laser points are divided into two classes: buried
channel deposits and other. The results are validated against two data sets, an existing paleographic map and a set of shallow drilling
measurements from the same area. Validation shows that on one hand thisnew method is strongly hampered by human intervention
in the traditional polder landscape, on the other hand it is shown that relative young river bed remains (4 620 to 1 700 years Before
Present) to some extend can be mapped in a fully automatic way.

1 INTRODUCTION

During the Holocene (approximately 12 000 years - present),
much of the western and central part of the Netherlands was ag-
grading, as active river systems (Rhine and Meuse) transported
sediments from the hinterland to the coastline. In combination
with sea level rise this resulted in a Holocene sediment sequence
of up to 20 meter thickness. As river channels consist predomi-
nantly of sand while the adjacent floodplains were dominated by
clay deposition and peat formation, a strong grain-size partition-
ing occurred. Furthermore, frequent shifts in channel location
due to avulsions, resulted in a complex subsurface of clay/peat
dominated floodplain deposits laterally and vertically alternating
with sand-rich channel areas, (Allen, 1965).

Currently, buried channel deposits are recognizable in the land-
scape, basically due to a process called topographic inversion.
This occurs when the floodplain deposits on the sides of the buried
channels compact at a higher rate than the channel sand itself.
At the surface this results in an area with a higher elevation at
the locations of buried channel deposits. Note that the sand re-
maining from an abandoned channel may not start directly at the
surface: channels abandoned relatively long ago may meanwhile
have been deeply covered by floodplain deposits. The maximum
height differences between the buried channels and the surround-
ings are in the order of a meter for relative large and young chan-
nel deposits. To some extent it holds that the thinner and older,
that is, deeper the channel deposits, the smaller also the height
difference.

Knowledge of the location of these channel remains is essen-
tial when planning and maintaining large construction works as
motorways and dikes, (Munstermann et al., 2008). Abrupt and
unidentified changes in the subsurface may lead to unexpected
differences in compaction, which may lead again to damaged or
uneven road surfaces or even to failing dikes.

Traditionally, mapping of the shallow subsurface of the Rhine-
Meuse delta is based on soil drillings. A large effort has been
made by Dutch Utrecht University: Based on more than 25 years

of field research using over 200 000 manual boreholes a paleo-
geographic map is composed, (Berendsen and Stouthamer, 2001),
see also Figure 1, right. As the drillings require a large amount
of manual labor in the field, not the whole Rhine-Meuse delta has
been covered in the same amount of detail. Also necessarily some
interpretation and interpolation steps were involved in composing
the map, which may have introduced local anomalies.

LIDAR data is being used more and more to reveal and high-
light morphological and archaeological structures that are hardly
visible. In archaeology, LIDAR data has been used to reveal
burial mounts, (Kakiuchi and Chikatsu, 2008), Celtic field sys-
tems, (Kooistra and Maas, 2008, Humme et al., 2006), or other
earthwork features, (M. Doneus and Jammer, 2008). In geomor-
phology, e.g. a spectral decomposition of the landscape signal as
captured by airborne laser scanning can reveal small scale rough-
ness features, (Perron et al., 2008). Previous studies, (Berend-
sen and Volleberg, 2007, Munstermann et al., 2008), showed that
also buried channel remains can be visualized using airborne laser
data from the AHN (Actueel Hoogtebestand Nederland) data.

In this research it is considered if it is possible to systematically
map channel remains from second generation, high resolution
AHN-2 data. In 2012 for every 50 cm grid point in The Nether-
lands a height value will be available with a precision of about 5
cm, (AHN, 2000). As a test area the so-called Alblasserwaard is
used, a polder of 350 km2, directly east of Rotterdam. The loca-
tion of this polder is indicated in the inset in Figure 5. For this
polder, a test data set has been kindly made available by provider
Fugro Aerial Mapping B.V. and owner Waterboard Rivierenland,
consisting of about 1.2 billion gridded points, see Figure 1, left.

From this data set points representing hard infrastructure are re-
moved in a filter procedure incorporating the Dutch topographic
base map GBKN. Remaining points are classified according to
four structural attributes into two classes, channel remain and non
channel remain. In Section 2 this data filtering and classification
procedure is discussed. Results are validated in Section 3 us-
ing the digital paleogeographic map and using drillings from the
Dutch geological database DINOLoket. The paper finishes with
conclusions and recommendations.



Figure 1: Alblasserwaard.Left: Laser altimetry data.Right: Paleogeographic map

2 LIDAR DATA FILTERING AND CLASSIFICATION

In this section methodology is described aiming at the classifi-
cation of airborne laser altimetry points into two classes, buried
channel and non-buried channel deposits. A main challenge in
this research is the huge amount of input points. As the input data
strongly influences the methodology, these are described first.
Then it is described how laser points representing hard infras-
tructure are removed before describing the actual classification
method.

2.1 Data description

For this research FLI-MAP400 VS laser altimetry data is used,
measured by Fugro Aerial Mapping BV for the Waterboard Riv-
ierenland. An overview of the entire data set is shown in Figure
1, left. The data was acquired during three days in August 2007,
with a minimum point density of 8 points per m2. The absolute
accuracy of a single point is reported to be 3 cm. From this raw
data, Fugro derived a Digital Surface Model (DSM) by removing
non-terrain points. The DSM points were consecutively resam-
pled to a 0.5m grid using inverse squared distance weighting. The
gridded data is organized in tiles of 2 500× 2 000 pixels each,
where each tile represents an area of 1.25× 1 km. In total the
Alblasserwaard data set was divided into 273 of such tiles con-
sisting of about 1.2 billion points in total. Moreover, to decrease
computational efforts, the 50 cm grid data have been downsam-
pled to a 2 m grid. As a result, the input data set for this research
consists of roughly 75 million points.

2.2 Removing non-field objects

In the gridded FLI-MAP data still objects like roads, trenches,
buildings and water surfaces are present. If unaddressed these
objects complicate the detection of buried channel deposits. The
laser data is filtered in two steps with the purpose of only keep-
ing data representing fields. In the first step, non-field objects are
removed using a mask constructed from GBKN data, in the sec-
ond step remaining unwanted objects are removed, based on the
terrain variability.

GBKN mask. The ‘Grootschalige Basiskaart van Nederland‘
(GBKN) is the Large Scale Standard Map of The Netherlands and
is the most detailed and accurate digital topographical database
available in the Netherlands, (GBKN, 2009). It is scale-free,
but is comparable to paper maps with a scale between 1:100 and
1:5,000. The precision of a point in comparison to another point
in the surrounding is better than 28 cm in suburban areas and

better than 56 cm in rural areas. The GBKN has a spaghetti-
structure: it only contains classified nodes and edges, for in-
stance road sides, water edges and building contours. Therefore
the GBKN map of the Alblasserwaard has to be converted to an
area map, consisting of classified segments, see Figure 2, left and
middle. This area map will then be applied as a mask to remove
those laser points that are in a polygonal segment from an un-
wanted class, like ‘road‘.

To create segments, the GBKN lines have to be automatically
connected and converted into classified segments. However, there
are errors in the database: lines sometimes do not connect exactly
or lines intersect without a node. Such situations have to be iden-
tified and adapted. Lines in the GBKN that do not exactly connect
are attached to the nearest line or node within a certain distance
threshold in a snapping procedure. Here a threshold of 10 cm
is used. Self intersections without nodes are removed by adding
nodes to the intersection points. Around the resulting area mask,
an additional buffer of 3m is added to further limit the influence
of unwanted objects: for example, ground close to a road is of-
ten disturbed, and cannot be considered as representative for the
situation in a field.

Terrain variability and density filter Despite this filtering me-
thod unwanted features still remain in the LIDAR data, see Fig-
ure 2, right, like for instance small trenches and other objects
not (yet) registered in the GBKN database. As fields are relative
smooth, a variability filter is applied, that removes those LIDAR
points where the variance over the nine nearest neighbors exceeds
0.10 m2. Finally, relatively isolated points are removed: a point
is considered isolated if the point density in a surrounding 41×

41 grid point window is below 50 %.

2.3 Channel classification

The points remaining after the removal of non-field objects are
classified into two classes by means of structural classification.
For this purpose first structural attributes are determined at each
grid point. As a result at each grid point a multi variate feature
vector is created that can be used as input for a standard remote
sensing classification method.

Slope and curvature attributes At each remaining LIDAR point,
the following four attributes are determined: slope, curvature,
TPI and smoothed TPI. Slope is chosen as an attribute because
at both sides of a buried channel, the elevation is increasing with
respect to the surrounding field. To derive slope, a plane is fitted
by least squares to a suited squared neighborhood of a LIDAR
point. From the planar parameters, an estimation of the local



Figure 2: GBKN maskLeft: Original GBKN line data;Middle: Final GBKN mask.Right: GBKN mask overlaid on LIDAR data.

slope is derived using Horn’s method, (Burrough and McDon-
nell, 1998). Curvature is chosen as an attribute because the terrain
at an elevation caused by a buried channel is convex as it is lo-
cally protruding. Flat terrain has a mean curvature of zero, while
convex terrain has positive mean curvature. Here an approxima-
tion of mean curvature is derived from local partial derivatives
by locally fitting a second degree polynomial surface to a suited
squared neighborhood, see for more details (Besl and Jane, 1986)
and (Nahib, 1990).

To reduce the computational costs of the least squares adjust-
ment involved in the slope and curvature determination, a down-
sampling strategy is applied. After an analysis of different down
sampling rates, in which slope values obtained from a down-
sampled data set where compared to slope values from the full
data set, it was decided to use only 10 % of the data using sys-
tematic sampling in a 49× 49 grid points window around each
pixel.

TPI and smoothed TPI attributes The Topographic Position
Index (TPI) is a measure of the elevation of a location compared
to the surrounding landscape, (Weiss, 2001). To compute the
TPI-value of a single pixel the difference between its elevation
and the average elevation of a neighborhood around that cell is
calculated. Most frequently an annular neighborhood is used,
that is, all cells between a certain minimal and maximal distance
are used in the calculation. A positive TPI-value means that the
cell is higher than its surroundings (at the specified neighborhood
size) while negative values mean it is lower. A TPI-value of zero
indicates that the cell either lies on a flat area or on a constant
slope. The TPI is of course strongly dependent on the scale. Here
TPI-values are computed using a minimal distance of 80 m and
a maximal distance of 100 m. From the TPI-values also a fourth
attribute is determined, the smoothed TPI. This is just the mean
of the TPI values in a 49× 49 grid points window and helps to
distinguish between small and large scale topographic features.

Maximum likelihood classification As a result of the struc-
tural attribute determination, at each grid point a 4D attribute
vector is given, consisting of slope, mean curvature, TPI and
smoothed TPI attribute values. The availability of these attribute
vectors allows us to apply standard classification techniques from
remote sensing. Here Maximum Likelihood classification is ap-
plied.

The Maximum Likelihood Classifier, (Gao, 2008), uses statis-
tics from class signatures to determine if a given pixel belongs
to a class. Each class signature is derived by manually selecting
small areas that are known to belong to a certain class. These
areas are called training samples. The training samples in this re-
search have been selected based on manual interpretation of the
height data and by looking at independent reference data, in this

case the digital paleogeographic map, compare Figure 1, right.
In Figure 3 the location of the training samples is shown. The
results of the classification were slightly cleaned using the mor-
phological operators ‘majority filter‘ and ‘conditional dilation‘ to
remove small outlying classification results and fill small holes,
e.g. (Jain, 1989).

3 RESULTS, VALIDATION AND DISCUSSION

In this section the results of the automatic classification of the Al-
blasserwaard LIDAR data are presented, validated and discussed.
First the visual validation results are discussed. Then two valida-
tion methods based on soil drillings are described, together with
the results of the actual validations.

3.1 Visual validation

In Figure 5 all LIDAR 2m grid pixels are shown in blue that
were classified as ‘buried channel‘. Clearly some more or less
connected channel structures in East-West direction are recog-
nizable. Simultaneously, many thicker fragments classified as
‘buried channel‘ are visible. Based on a visual evaluation it is
not directly obvious if these thicker fragments indeed correspond
to channel remains. Also anomalies are visible in the classifica-
tion results: thin, straight lines appear at many locations and are
mainly corresponding to terrain close to roads and ditches.

Figure 6 shows a zoom-in of the classification results, again in
blue, superimposed on areal imagery data. The area in Figure 6
approximately corresponds to the red rectangle in Figure 5. This
image confirms that the classification is still influenced by in-
frastructure: The classification algorithm reports buried channels

Figure 3: Training samples used for the classification process.



near and at farmyards and along a small ditch which indicates
that the GBKN infrastructure database is not complete and that
the filtering procedure should be further improved.

3.2 Drilling data description

For this research two independent validation data sets based on
soil drillings are available. The first is a map product, the second
set consist of a large amount of single drillings, interpreted by the
authors.

Digital paleogeographic map A digital paleogeographic map
of the complete Rhine-Meuse delta during the Holocene (includ-
ing the locations of buried channel deposits) was published in
(Berendsen and Stouthamer, 2001). The Alblasserwaard section
of this digital map, Figure 1, right, is used as validation in this
research. The map is based on more than 25 years of field re-
search using over 200 000 manual boreholes, 45 000 archaeolog-
ical findings and 1 200 radiocarbon datings. The map is stored
in vector format, each individual area consists of a polygon. For
each area up to 12 different attributes are stored like channel size,
channel length, age, year of beginning, year of ending, etc. The
age of the channels on the map are given in years Before Present,
where the Present is defined as the year 1950. For this research
four main age categories are distinguished, indicated by differ-
ent colors in Figure 1. These periods have been manually chosen
based on the distribution and amount of channels abandoned in
these periods.

Figure 4: Classified DINO drillings.

DINO drillings The DINO database contains data and infor-
mation of the subsurface of The Netherlands, (DINOLoket, 2000).
The archive contains among others shallow boring measurements
that are suitable to use as reference data for this research. They
cover primarily the shallow subsurface and contain standardized
information about the type of sediments and their depth. In total
2 680 individual drillings were available for the Alblasserwaard.
The eastern part has a high drilling density, in the western part
only a very limited number of drillings is available.

After importing the DINO data, each drilling was automatically
analyzed to determine if the drilling was part of a buried channel
deposit. This was done by applying a basic filter: search for sand
layers that are cumulatively more than 3 meters in thickness in
the shallow subsurface between 3 and 12 meters. If more than
3 meters of sand was found, the drilling was classified as buried
channel deposits. In all other cases the drilling was classified as
Non-buried channel deposits. The reason why the top 3 meters are

discarded is that sand layers can be present there due to other rea-
sons, like construction works. The analysis of all of the drillings
in the eastern part is shown in Figure 4. This form of automatic
interpretation of drilling data is prone to errors. This means that
in this case the amount of correctly interpreted drillings is largely
unknown. Still Figure 4 clearly visualizes the spatial correlation
in the drilling classification results.

3.3 Validation results

Further visual validation is obtained by comparing the automati-
cally classified LIDAR points to the digital paleogeographic map
and to the classified DINO drillings. For this project this was
done using the ESRI Flex viewer, (ESRI, 2009). This program
allows internet users to simultaneously view within their normal
browser the different spatial layers on available background im-
agery, just as within a GIS environment. A screen shot is shown
in Figure 6. According to the digital paleogeographic map this
figure contains buried channel remains from three periods, com-
pare Figure 1, right. In red some relative old (6270-4621 yBP)
and wide buried channels are visible, in orange another wide,
slightly younger (4620-3701 yBP) channel is given. while some
relatively young (3700-1700 yBP) smaller channel remains are
shown in yellow. The LIDAR data classified as channel remain
(in blue) gives the best match with the orange channel, while
some matching results on the yellow channels are found as well.
There seems to be hardly no correlation between the blue LIDAR
channel remains, and the large and old red channels. Similarly the
classified DINO drillings give good agreement over the orange
channel, while the DINO drillings give mixed responses over the
red channel. Many DINO drillings outside the areas classified
by any method as buried channel are indeed red, but also here
exceptions exist.

Table 1: Comparison classified LIDAR to selected map, in num-
ber of grid points.

Map with all channels
LIDAR channel 2 777 458 4 813 182

non-channel 18 439 011 52 375 000
Map 4620-1700 yBP

LIDAR channel 1 594 995 5 994 565
non-channel 4 235 750 66 579 157

channel non-channel

These observations are partly confirmed by the numeric compar-
ison over the region of Alblasserwaard as a whole. For back-
ground on classification terminology, the reader is referred to e.g.
(Gao, 2008). In Table 1, the confusion matrix of the LIDAR
buried channel classification compared to the paleogeographic
map is given. The top matrix compares the LIDAR classifica-
tion to all buried channels shown in Figure 1, right; in the bottom
matrix the comparison is restricted to those channels in the pale-
ogeographic map that are dated between 4620 and 1700 yBP, i.e.
the yellow and orange channels in Figure 1, right. The overall
classification results show that the amount of agreement between
the paleogeographic map and the LIDAR classification is limited.
Although the overall classification accuracy equals 76 %, kappa,
a measure of similarity without chance agreement, only equals
κ = 0.06. By removing the youngest and oldest channel class
from the comparison, the amount of agreement improves to 87 %
with an associated kappa value ofκ = 0.21

There are several possible reasons for this lack of agreement.
First of all it should be noted that a condition for a high degree
of agreement is that a buried channel remainder always results in
a locally higher elevation. Although there is strong evidence that



Figure 5: Buried channel classification results. The red rectangle approximately corresponds to the area of Figure 6. The inset shows
the location of the Alblasserwaard in The Netherlands.

this condition in general is fulfilled, it is not yet sufficiently clear,
what buried channel characteristics result in what amount of local
elevation setup. Other reasons originate in the processing of the
available information. In the composition of the paleogeographic
map, errors are associated to the interpretation and interpolation
of the used drillings. The classification of the LIDAR data is
strongly hampered by the presence of man-made objects and is
further influenced by the chosen attributes and the scale on which
they are determined and by the chosen classification method.

The reason that the youngest, green, channels in the Paleogeo-
graphic map do not give a good comparison with the classified LI-
DAR data is simply that these channels either still exist at approx-
imately the same location or that buildings and roads are present
along or on the remains. In both cases the LIDAR data for these
regions is simply filtered out in the data processing procedure.
The reason that the oldest channel remains are not well detected
by the LIDAR data is that probably these channel remains are
located relatively deep, and therefore result in less topographic
inversion and therefore less height difference.

Table 2: Comparison to classified DINO drillings, in number of
drillings.

DINO drillings
LIDAR channel 169 195

non-channel 719 1597
Map channel 402 499
non-channel 486 1293

channel non-channel

In Table 2 also the confusion matrices between the classified
DINO drillings and the classified LIDAR results, top, and the

paleogeographic map, bottom, are given. Both the LIDAR re-
sult and the map have a comparable amount of correct and incor-
rect classifications (sum of each row). They do however differ in
the type of misclassification: in the LIDAR classification a rel-
ative large number of points were classified as non-channel that
where channels according to to our automatic interpretation of the
DINO drillings. Again this could be caused by currently present
infrastructure: many DINO drillings were obtained in the zones
classified as green, that is young, channel remains in the paleo-
geographic map, Figure 1, right, where no reliable LIDAR height
data is available.

4 CONCLUSIONS AND RECOMMENDATIONS

In this work, an original approach for the detection of buried
channel remains from high resolution LIDAR data had been de-
scribed and validated. The first results indicate that to some ex-
tend it is possible to automatically determine the location of sand-
rich channel areas. The results of this large case study also demon-
strate that there are many assumptions/steps involved in both de-
riving the initial classification results and in validating these re-
sults. In future work, the impact of these assumptions on the final
results should be further investigated.

One such step is the applied method of classification. In the
software used for this research (ArcGIS) it was not possible to
combine training samples from different tiles. Such combination
could have ruled out possible regional variations in class signa-
tures. Using more tiles and training samples from different loca-
tions and from in particular channels of different scale could lead
to improved classification results. Comparison to the paleogeo-
graphic map also indicates that the depth, age and probably also



Figure 6: Buried channel classification results.Blue: Automatic classification LIDAR data;Red, orange, yellow: classification
according to digital paleogeographic map, compare Fig. 1;Red dots: DINO drillings classified as non-channel;Green dots: DINO
drillings classified as channels.

size of the channel remains are parameters whose influence on
the relative elevation should be further investigated. The digital
paleogeographic map is derived based on an interpretation of ac-
tual soil drillings and an interpolation step to connect identified
channel locations to a braided network of channels. This last step
has not been implemented yet for our automatic buried channel
classification.

ACKNOWLEDGMENTS

The authors would like to thank Waterboard Rivierenland and Fu-
gro Aerial Mapping B.V. for providing them with the airborne
laser data. Esther Stouthamer from Utrecht University is thanked
for providing the authors with a digital version of the paleogeo-
graphic map.

REFERENCES

AHN, 2000. Productspecificaties AHN1 en AHN2. Techni-
cal report, Rijkswaterstaat, DID. http://www.ahn.nl, last visited:
November 20, 2009.

Allen, J., 1965. A review of the origin and charactersitics of
recent alluvial sediments. Sedimentology 5, pp. 89–101.

Berendsen, H. and Stouthamer, E., 2001. Palaeogeographic de-
velopment of the Rhine-Meuse delta, The Netherlands. Konin-
klijke Van Gorcum.

Berendsen, H. J. A. and Volleberg, K., 2007. New prospects
in geomorphological and geological mapping of the rhine-meuse
delta application of detailed digital elevation maps based on laser
altimetry. Netherlands Journal of Geosciences 86(1), pp. 15–22.

Besl, P. and Jane, R., 1986. Invariant surface characteristics for3d
object recognition in range images. Computer Vision, Graphics,
and Image Processing archive 33(1), pp. 33–80.

Burrough, P. and McDonnell, R., 1998. Principles of Geographi-
cal Information System. Oxford University Press.

DINOLoket, 2000. Data and Information of the Sub-
surface of The Netherlands. Technical report, TNO.
http://www.dinoloket.nl/en/DINOLoket.html, last visited:
November 20, 2009.

ESRI, 2009. Get started with the sam-
ple flex viewer. Technical report, ESRI.
http://www.esri.com/events/seminars/webmaps/pdfs/handout.pdf,
Accessed: November 20, 2009.

Gao, J., 2008. Digital Analysis of Remotely Sensed Imagery.
McGraw-Hill Professional.

GBKN, 2009. Grootschalige BasisKaart van Nederland.
http://www.gbkn.nl/nieuwesite/html/engelsesite.html, Accessed:
November 20, 2009.

Humme, A., Lindenbergh, R. and Sueur, C., 2006. Revealing
celtic fields from lidar data using kriging based filtering. In: Pro-
ceedings ISPRS Commission V Symposium, ’Image engineering
and vision metrology, Dresden.

Jain, A., 1989. Fundamentals of digital image processing.
Prentice-Hall, Inc., New Jersey.

Kakiuchi, T. and Chikatsu, H., 2008. Robust extraction of ancient
burial mounds in brushland from laser scanning data. IAPRS
XXXVII(B5), pp. 341–346.

Kooistra, M. and Maas, G., 2008. The widespread occurrence of
Celtic field systems in the central part of the Netherlands. Journal
of Archaeological Science 35(8), pp. 2318–2328.

M. Doneus, C. Briese, M. F. and Jammer, M., 2008. Archaeolog-
ical prospection of forested areas using full-waveform airborne
laser scanning. Journal of archaeological science 35(4), pp. 882–
893.

Munstermann, W., Ngan-Tillard, D. and Venmans, A., 2008. To-
tal engineering geological approach to motorway construction on
soft soils. In: Proceedings EurEnGeo conference, Madrid, Spain,
pp. 1–10.

Nahib, N., 1990. Algebraic error analysis for surface curvature
and segmentation of 3-d range images. Pattern Recognition 23(8),
pp. 807–817.

Perron, J., Kirchner, J. and Dietrich, W., 2008. Spectral sig-
natures of characteristic spatial scales and non-fractal structure
in landscapes. Journal of Geophysical Research - Earth Surface
113(F04003), pp. 1–14.

Weiss, A., 2001. Topographic position and landforms analysis
- poster presentation. In: ESRI User Conference, San Diego,
United States, p. 1.


