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Abstract. We show how the fixed point problem for a special type of correspondence R
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1. Introduction

Given a game in strategic form with n players, its set of Nash equilibria
equals the set of fixed points of the best reply correspondence R. In case each
strategy set is m-dimensional, this fixed point problem is a mn-dimensional
one.

For oligopoly-like games, [9] and [12] independently where able to transform
the fixed point problem for R into an associated more simple fixed point
problem for a correspondence B with domain in R. This technique was used
by various authors dealing with such games.1 One aim of our article is to
improve this technique and to make it more conceptual and general. To this

1For example by [11, 5, 2, 10, 6, 7, 13, 1, 14, 8].
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end we divide it into two parts: 1) the definition of B and the relation between
the two fixed point problems; 2) the analysis of the fixed point problem for B.
Both parts will be performed in a correspondence setting where games do not
play a role. Later on the results will be applied for games in strategic form to
the best reply correspondence.

Theorem 3.2 identifies a quite general setting for which the first part con-
tinues to work. This setting is compatible with games in strategic form where
for each player i his best reply correspondence depends on some weighted sum∑

l ϕl(xl) (with values in an Abelian group G) of the strategies xl of the other
players; we refer to this correspondence as the reduced best reply correspon-
dence R̃i. In particular the setting contains all additively aggregative games,
i.e., games where the payoff function of a player depends only on his own
strategy and the sum of all strategies.

Another aim of our article is to study the fixed point problem for B (in case
G = R), though under additional assumptions which enable us to prove the
existence of a fixed point of B by means of the intermediate value theorem.
Applying our results to games, we obtain a Nash equilibrium existence result
which has been proved in the literature only by means of the Nikaido-Isoda
theorem ([4]) or related theorems which rely on Brouwer’s fixed point theorem.
The main assumption made is that each correspondence Ri is singleton-valued
and that each function ϕi◦R̃i+Id is continuous and strictly increasing. Among
other things these assumptions entail the at-most-singleton-valuedness of B
and simplifies the analysis. We also show that under the additional condition
that every ϕi ◦ R̃i is decreasing there exists a unique Nash equilibrium. As far
as we know this uniqueness result is new. It should be noted that in particular
no differentiability assumption is made throughout the whole article.

2. Setting

Let n be a positive integer,2

N := {1, . . . , n}, (2.1)

and let
ϕi : Xi → G (i ∈ N)

be mappings from a non-empty set Xi into an Abelian group G.
Put

X := X1 × · · · ×Xn (2.2)
and for i ∈ N

Xı̂ := X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn. (2.3)

We sometimes identify X with Xi ×Xı̂ and then write x ∈ X as x = (xi;xı̂).

2Our results formally hold for n = 1 when empty objects are interpreted correctly.
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For i ∈ N let Ri : Xı̂ ( Xi be a correspondence. The correspondence
R : X ( X is defined by

R(x) := R1(x1̂)× · · · ×Rn(xn̂). (2.4)

We write, for i ∈ N ,3

Ti :=
∑

l∈N\{i}

ϕl(Xl). (2.5)

Define the mapping ϕ : X → G by

ϕ(x) :=
∑
l∈N

ϕl(xl)

and let
Y := ϕ(X).

Note that for every i ∈ N
Y = Ti + ϕi(Xi).

For i ∈ N , we say that Ri has the factorisation property if there exists4 a
correspondence R̃i : Ti ( Xi such that for every z ∈ Xı̂

Ri(z) = R̃i

( ∑
l∈N\{i}

ϕl(zl)
)
. (2.6)

Note that Ri is at most singleton-valued if and only if R̃i is at most singleton-
valued. Finally, let Y be a subset of Y such that for all x ∈ fix(R) one has
ϕ(x) ∈ Y. Thus, for instance, Y = Y is always possible.

3. Transformation method

In the following definition we introduce our most important objects: Bi (i ∈
N) and B. This definition was inspired by the articles like the ones mentioned
in the Introduction. The Bi are quite similar to what in [13, p. 42] are called
the cumulative best reply correspondences.

Definition 3.1. Let i ∈ N and suppose Ri has the factorisation property.
The correspondence Bi : Y ( Xi is defined by

Bi(y) := {xi ∈ Xi | y − ϕi(xi) ∈ Ti and xi ∈ R̃i(y − ϕi(xi))}.
If every Ri has the factorisation property, then the Bi (i ∈ N) are well-

defined and hence we are in a position to define the correspondences B : Y (
X and B : Y ( G by

B(y) := B1(y)× · · · ×Bn(y), B(y) := ϕ(B(y)). �

3The sum here is a Minkowski-sum.
4If such R̃i exists, then it is unique.



182 PIERRE VON MOUCHE, FEDERICO QUARTIERI AND FERENC SZIDAROVSZKY

Theorem 3.2. Suppose every Ri has the factorisation property.
(1) ϕ(fix(R)) = fix(B). So R has a fixed point if and only if B has a fixed

point.
(2) fix(R) ⊆ B(fix(B)).
(3) Let y ∈ Y. If x ∈ B(y) and B(y) = {y}, then x ∈ fix(R).
(4) If B is at most singleton-valued on fix(B), then fix(R) = B(fix(B)).
(5) If B is at most singleton-valued and has a unique fixed point, then R

has a unique fixed point. �

Proof. 1. ‘⊇’: suppose y ∈ fix(B). So y ∈ B(y) = ϕ(B(y)) =
∑

l∈N ϕl(Bl(y)).
Let xi ∈ Bi(y) (i ∈ N) be such that y =

∑
l∈N ϕl(xl). So y = ϕ(x). This

implies xi ∈ R̃i(y − ϕi(xi)) = Ri(xı̂) (i ∈ N). Thus x ∈ fix(R) and y ∈
ϕ(fix(R)).

‘⊆’: suppose y ∈ ϕ(fix(R)). Let x ∈ fix(R) be such that y = ϕ(x). As
x ∈ fix(R) we have for every i ∈ N that xi ∈ Ri(xı̂) = R̃i(ϕ(x) − ϕi(xi)) =
R̃i(y − ϕi(xi)). It follows that xi ∈ Bi(y) (i ∈ N). Now y =

∑
i∈N ϕi(xi) ∈∑

i∈N ϕi(Bi(y)) = B(y). Thus y ∈ fix(B).
2. Suppose e ∈ fix(R). Note that y := ϕ(e) ∈ Y. We prove that y ∈ fix(B)

and e ∈ B(y). For i ∈ N we have y − ϕi(ei) ∈ Ti. As e ∈ fix(R), we have
for every i ∈ N that ei ∈ Ri(eı̂) = R̃i(y − ϕi(ei)). So ei ∈ Bi(y) and hence
e ∈ B(y). From this, y =

∑
l∈N ϕl(el) ∈

∑
l∈N ϕl(Bl(y)) = B(y). Thus

y ∈ fix(B).
3. Fix i ∈ N . Note that ϕ(x) =

∑
l∈N ϕl(xl) ∈

∑
l∈N ϕl(Bl(y)) = B(y). As

B(y) = {y}, ϕ(x) = y follows. As xi ∈ Bi(y), we obtain xi ∈ R̃i(y − ϕi(xi)),
as desired.

4. As part 2 holds, we still have to prove ‘⊇’. So suppose x ∈ B(fix(B)). Let
y ∈ fix(B) such that x ∈ B(y). As y ∈ B(y) and B is at most singleton-valued
on fix(B), we have B(y) = {y}. So by part 3, x ∈ fix(R).

5. From parts 1 and 4. �

4. Analysis of B

The analysis in this section is divided into two steps. First we analyse the
Bi (i ∈ N) in Proposition 4.1 and then in Proposition 4.2 we analyse B. ¿From
now on we shall always assume Y = Y .

Proposition 4.1. Fix i ∈ N . Suppose G = R and Ti ⊆ R+. Suppose Ri has
the factorisation property and is singleton-valued.5 Consider the correspon-
dence Bi : Y ( Xi.

(1) Let y ∈ Y and suppose xi ∈ Bi(y). Then ϕi(xi) ≤ y.

5So also R̃i : Ti ( Xi is singleton-valued and henceforth we consider R̃i as a function
Ti → Xi.
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(2) For all z ∈ Ti: R̃i(z) ∈ Bi((ϕi ◦ R̃i)(z) + z). In particular R̃i(0) ∈
Bi((ϕi ◦ R̃i)(0)).

(3) For every y ∈ Y : Bi(y) 6= ∅ ⇔ y ∈ (ϕi ◦ R̃i + Id)(Ti).
(4) If the function ϕi◦R̃i+Id is injective, then ϕi◦Bi is at most singleton-

valued and is singleton-valued on (ϕi ◦ R̃i + Id)(Ti).
(5) (a) If the function ϕi◦R̃i +Id is increasing, then for all y, y′ ∈ Y with

y < y′ and x ∈ Bi(y), x′ ∈ Bi(y′) one has ϕi(x′)−ϕi(x) < y′ − y.
(b) If the function ϕi ◦ R̃i + Id is strictly increasing, then ϕi ◦Bi− Id

is strictly decreasing as a function on (ϕi ◦ R̃i + Id)(Ti)
(6) If ϕi ◦ R̃i is decreasing and ϕi ◦ R̃i + Id is strictly increasing, then for

every y, y′ ∈ (ϕi ◦ R̃i + Id)(Ti) with y < y′ it holds that6 ϕi(Bi(y)) ≥
ϕi(Bi(y′)). �

Proof. Note that Bi(y) = {xi ∈ Xi | ϕi(xi) ∈ y − Ti and xi ∈ R̃i(y − ϕi(xi))}.
1. As Ti ⊆ R+, one has y − Ti ≤ y.
2. Bi((ϕi ◦ R̃i)(z) + z) = {xi ∈ Xi | ϕi(xi) ∈ (ϕi ◦ R̃i)(z) + z − Ti and xi =

R̃i((ϕi ◦ R̃i)(z) + z − ϕi(xi))}. Thus R̃i(z) ∈ Bi((ϕi ◦ R̃i)(z) + z).
3. ‘⇒’: suppose xi ∈ Bi(y). Now xi = R̃i(y − ϕi(xi)) and y − ϕi(xi) ∈ Ti.

This implies y = ϕi(xi) + (y − ϕi(xi)) = (ϕi ◦ R̃i)(y − ϕi(xi)) + (y − ϕi(xi)) ∈
(ϕi ◦ R̃i + Id)(Ti).

‘⇐’: by part 1.
4. Suppose y0 ∈ Y and y, y′ ∈ (ϕi ◦ Bi)(y0). Let x, x′ ∈ Bi(y0) be such

that y = ϕi(x) and y′ = ϕi(x′). As R̃i is singleton-valued it follows that
x = R̃i(y0 − ϕi(x)) and x′ = R̃i(y0 − ϕi(x′)). Thus

y = (ϕi ◦ R̃i)(y0−ϕi(x))+ (y0−ϕi(x)) = (ϕi ◦ R̃i)(y0−ϕi(x′))+ (y0−ϕi(x′)).

As ϕi ◦ R̃i + Id is injective, it follows that y0 − ϕi(x) = y0 − ϕi(x′). So
ϕi(x) = ϕi(x′). Thus y = y′ and the first statement holds. Part 3 now implies
the second statement.

5a. By contradiction suppose y, y′ ∈ Y with y < y′, x ∈ Bi(y), x′ ∈ Bi(y′)
and ϕi(x′)− ϕi(x) ≥ y′ − y. Now y′ − ϕi(x′) ≤ y − ϕi(x) and

ϕi(x′)− ϕi(x) = (ϕi ◦ R̃i)(y′ − ϕi(x′))− (ϕi ◦ R̃i)(y − ϕi(x))

=
(
((ϕi ◦ R̃i)(y′−ϕi(x′)) + (y′−ϕi(x′))− ((ϕi ◦ R̃i)(y−ϕi(x)) + (y−ϕi(x))

)
+(ϕi(x′)− ϕi(x)) + (y − y′) < 0 + ϕi(x′)− ϕi(x) + 0,

which is absurd.
5b. This follows from parts 3, 4 and 5a.
6. From parts 2 and 3 it follows that Bi is singleton-valued on

(ϕi ◦ R̃i + Id)(Ti).

6Note that, by parts 5 and 6, the sets Bi(y) and Bi(y
′) are singletons.
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7. By contradiction suppose y, y′ ∈ (ϕi ◦ R̃i + Id)(Ti) with y < y′

and ϕi(Bi(y)) < ϕi(Bi(y′)). Now (ϕi ◦ R̃i)(y − ϕi(Bi(y))) = ϕi(Bi(y)) <

ϕi(Bi(y′)) = (ϕi ◦ R̃i)(y′ − ϕi(Bi(y′))). As ϕi ◦ R̃i is decreasing, we have
y−ϕi(Bi(y)) > y′−ϕi(Bi(y′)). As ϕi ◦ R̃i + Id is strictly increasing it follows
that (ϕi ◦R̃i +Id)(y−ϕi(Bi(y))) > (ϕi ◦R̃i +Id)(y′−ϕi(Bi(y′))). Thus y > y′,
which is a contradiction. �

In Proposition 4.2 and in Theorem 4.3 we assume that every Ri is singleton-
valued and has the factorisation property. Also we assume that G = R and
for every i ∈ N that ϕi ≥ 0 and Ti = [0, µi] with µi > 0 or Ti = R+. This
implies that n ≥ 2, that 0 ∈ ϕi(Xi) (i ∈ N) and that ϕi(Xi) ⊆ Tj for every
i, j ∈ N with i 6= j. We put

NT := {i ∈ N | Ti = [0, µi]}
and fix l ∈ N such that (ϕi ◦ R̃i)(0) ≤ (ϕl ◦ R̃l)(0) (i ∈ N). Finally,

X := (ϕl ◦ R̃l)(0).

Proposition 4.2. Suppose every (ϕi ◦ R̃i + Id)(Ti) is an interval of R with
for i ∈ NT a well-defined maximum wi. If NT 6= ∅, then fix k ∈ NT such
that wk ≤ wi (i ∈ NT ). Let I := [X,+∞ [ if NT = ∅ and I := [X,wk] if
NT 6= ∅. Consider the correspondences Bi (i ∈ N) and B. Finally, suppose
each correspondence ϕi ◦Bi is at most singleton-valued.

(1) I is a non-empty interval.
(2) I ⊆ ∩i∈N (ϕi ◦ R̃i + Id)(Ti).
(3) B � I is singleton-valued.
(4) If ϕl ◦ R̃l + Id is increasing, then B(y) = ∅ for every y ∈ Y \ I.7

(5) B(X) ≥ X.
(6) For every i ∈ N \NT suppose that the function ϕi ◦ R̃i is bounded. If

NT 6= ∅, then suppose ϕk ◦ R̃k + Id is increasing.
(a) There exists X ∈ I with B(X) ≤ X;
(b) If the function B � I is continuous, then this function has a fixed

point. �

Proof. 1. This is trivial if NT = ∅. Now suppose NT 6= ∅. We prove that the
inequality (ϕl ◦ R̃l)(0) ≤ wk holds.

Case where l = k: here it holds as (ϕl ◦ R̃l)(0) ∈ (ϕl ◦ R̃l + Id)(Tl).
Case where l 6= k: as (ϕl ◦ R̃l)(0) ∈ ϕl(Xl) ⊆ Tk it follows that

(ϕl ◦ R̃l)(0) ≤ (ϕl ◦ R̃l)(0) + (ϕk ◦ R̃k)(ϕl ◦ R̃l)(0))

≤ max(ϕkR̃k + Id)(Tk) = wk.

7And by part 3 we see that B is almost singleton-valued.
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2. Case NT = ∅: now Ti = R+ (i ∈ N). As (ϕi ◦ R̃i + Id)(R) is an
interval and ϕi ≥ 0, it follows that this interval contains [(ϕi ◦ R̃i)(0),+∞ [.
So ∩i∈N ((ϕi ◦ R̃i + Id)(R)) contains ∩i∈N [(ϕi ◦ R̃i)(0),+∞ [ = [X,+∞ [ = I.

Case NT 6= ∅: for i ∈ NT , as (ϕi ◦ R̃i + Id)(Ti) is an interval, it fol-
lows that this interval contains [(ϕi ◦ R̃i)(0), wi]. This implies I = [X,wk] =
[(ϕl ◦ R̃l)(0), wk] ⊆ ∩i∈NT

[(ϕi ◦ R̃i)(0), wi] ⊆ ∩i∈NT
(ϕi ◦ R̃i + Id)(Ti). Also

[(ϕl ◦ R̃l)(0), wk] ⊆ ∩i∈N\NT
[(ϕi ◦ R̃i)(0), wk] ⊆ ∩i∈N\NT

[(ϕi ◦ R̃i)(0),+∞ [ ⊆
∩i∈N\NT

(ϕi ◦ R̃i + Id)(Ti). Thus I ⊆ ∩i∈N (ϕi ◦ R̃i + Id)(Ti).
3. With Proposition 4.1(3) it follows that every ϕi◦Bi is singleton-valued on

(ϕi◦R̃i+Id)(Ti). So every ϕi◦Bi is singleton-valued on ∩j∈N (ϕj ◦R̃j +Id)(Tj).
Part 2 now implies that every ϕi ◦Bi is singleton-valued on I. Thus also B � I
is singleton-valued.

4. As ϕl ◦ R̃l + Id is increasing and 0 = min (Tl), we have ϕl ◦ R̃l + Id ≥
(ϕl ◦ R̃l + Id)(0). Therefore Proposition 4.1(3) implies Bl(y) = ∅ for every
y ∈ Y with y < (ϕl ◦ R̃l)(0). This implies that B(y) = ∅ for every y ∈ Y with
y < X. So if NT = ∅, then the proof is complete. Now suppose NT 6= ∅. If
y ∈ Y with y > wk, then, by Proposition 4.1(3), Bk(y) = ∅ and therefore also
B(y) = ∅.

5. With Proposition 4.1(2) we obtain B(X) =
∑

j∈N (ϕj ◦Bj)(X)) ≥ (ϕl ◦
Bl)(X) = (ϕl ◦Bl)((ϕl ◦ R̃l)(0)) = (ϕl ◦ R̃l)(0) = X.

6a. Case NT = ∅: we prove that for every i ∈ N there exists Xi ≥ X such
that (ϕi◦Bi)(y) ≤ y

n for all y ≥ Xi. (Then take, e.g., X := max{Xi | i ∈ N}.)
So fix i ∈ N . By contradiction suppose there does not exist such an Xi. This
implies the existence of a sequence (yj) in [X,+∞ [ with limj→∞ yj = +∞
and (ϕi ◦Bi)(yj) > yj/n for all j. Now for all j

ϕi(R̃i(yj − (ϕi ◦Bi)(yj))) = ϕi(Bi(yj)) > yj/n.

It follows that limj→∞ R̃i(yj − (ϕi ◦Bi)(yj)) = +∞. As ϕi is bounded, this is
absurd.

Case NT 6= ∅: take X := (ϕk ◦ R̃k + Id)(µk). As ϕk ◦ R̃K + Id is increasing
and in case k 6= l it holds that X ≥ µk ≥ (ϕl ◦ R̃l)(0), it follows that X ∈
[(ϕl ◦ R̃l)(0), wk]. From Proposition 4.1(2) it follows that

B(X) =
∑
j∈N

(ϕj ◦Bj)(X) = (ϕk ◦Bk)((ϕk ◦ R̃k)(µk) + µk)

+
∑
j 6=k

(ϕj ◦Bj)((ϕk ◦ R̃k)(µk) + µk)

= (ϕk ◦ R̃k)(µk)+
∑
j 6=k

(ϕj ◦Bj)((ϕk ◦ R̃k)(µk)+µk) ≤ (ϕk ◦ R̃k)(µk)+µk = X.

6b. A consequence of parts 5, 6a and the intermediate value theorem. �
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Theorem 4.3. Suppose every Ri is singleton-valued and has the factorisation
property, G = R and for every i ∈ N that ϕi ≥ 0 and Ti = [0, µi] with µi > 0
or Ti = R+. Also suppose every ϕi ◦ R̃i is bounded and every ϕi ◦ R̃i + Id is
continuous and strictly increasing. Consider the correspondence B.

(1) B is at most singleton-valued.
(2) The correspondence B has a fixed point.
(3) If every ϕi ◦ R̃i is decreasing, then B has a unique fixed point.
(4) If for every i ∈ N and z ∈ Ti with ϕi(R̃i(z)) ≤ z it holds that ϕi ◦ R̃i

is decreasing on Ti \ [0, z], then B has a unique fixed point.8 �

Proof. Note that every ϕi ◦ R̃i also is continuous. Every (ϕi ◦ R̃i + Id)(Ti)
is an interval of R. As ϕi ◦ R̃i + Id is strictly increasing, ϕi ◦ Bi is at most
singleton-valued and (ϕi ◦ R̃i + Id)(Ti) has in case i ∈ NT as maximum wi =
(ϕi ◦ R̃i + Id)(µi). Let I be as in Proposition 4.2.

1. Apply Proposition 4.2(3,4).
2. Proposition 4.1(5a) together with Proposition 4.2((2) guarantees that

the function B � I is continuous. Proposition 4.2(6b) applies and implies that
this function has a fixed point. Thus also B has a fixed point.

3. As in the proof of part 1 we see that B � I has a fixed point. We
shall prove that this fixed point is unique. Then the proof is complete as
by Proposition 4.2(4) we see that also B has a unique fixed point. Well,
Proposition 4.1(6) implies that every ϕi ◦ Bi is decreasing on I. This implies
that also B � I is decreasing and so this function has a unique fixed point.

4. As in part 3, the proof is complete if we can prove that B � I has a
unique fixed point. By contradiction suppose that y, y′ with y < y′ are fixed
points of B � I. So we have y = B(y) =

∑
l ϕl(Bl(y)). This implies that

there exists M ⊆ N with #M = n− 1 such that ϕm(Bm(y)) ≤ y/2 (m ∈ M).
Therefore (R̃m− Id)(y−ϕm(Bm(y))) = 2ϕm(Bm(y))−y ≤ 0. Hence, for every
m ∈ M ,

ϕm ◦ R̃m is decreasing on Tm \ [0, y − ϕm(Bm(y))].
This, together with Proposition 4.1(5a), implies that for every m ∈ M

ϕm ◦Bm is decreasing on Y \ [0, y].

Let {i} = N \M . By Proposition 4.1(5b),

ϕi ◦Bi − Id is strictly decreasing.

It follows that B − Id is strictly decreasing on Y \ [0, y]. In the proof of part
1, we have seen that (B− Id) � I is continuous; this implies that B− Id is also
strictly decreasing on Y \ [0, y [. So B(y′)− y′ < B(y)− y = 0, a contradiction
with B(y′) = y′. �

8Note that this result implies part 3 of the theorem.
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The above analysis of B becomes much more complicated in case the R̃i are
multi-valued. For such a situation we now give sufficient conditions for the
existence of a fixed point of B by using a deep fixed point result of [3]:

Theorem 4.4. Suppose every Ri has the factorisation property, every Xi is
a non-empty compact subset of R, G = R and ϕi = Id (i ∈ N). If each
correspondence ϕi ◦ R̃i is upper hemi-continuous and has a decreasing single-
valued selection, then B has a fixed point. �

Proof. To this situation the result in [3] applies and guarantees that R has a
fixed point. Theorem 3.2 implies that B has a fixed point. �

5. A Nash equilibrium existence and uniqueness result

In this section we apply Theorems 3.2 and 4.3 to a special class of games
in strategic form.

We recall that a game in strategic form between n (≥ 1) players is given by
nonempty (strategy) sets Xi (1 ≤ i ≤ n) and (payoff ) functions fi : X1×· · ·×
Xn → R (1 ≤ i ≤ n).

Consider a game in strategic form Γ. Using notations (2.1), (2.2), (2.3),
we define for each player i (i.e., for every i ∈ N) and for every z ∈ Xı̂ the
(conditional payoff ) function f

(z)
i : Xi → R by

f
(z)
i (xi) := fi(xi; z)

and the (best reply) correspondence Ri : Xı̂ ( Xi by

Ri(z) := argmax f
(z)
i .

The correspondence R : X ( X is defined by (2.4). A Nash-equilibrium of Γ
is a fixed point of R. Note that x ∈ fix(R), if and only if for all i ∈ N , xi is a
maximiser of f

(xı̂)
i .

Corollary 5.1. Consider a game in strategic form where the following condi-
tions hold.

a. Every best-reply correspondence Ri is singleton-valued.
b. There exist ϕi : Xi → R (i ∈ N) and9 f̃

(z)
i : Xi → R (i ∈ N, z ∈ Ti) such

that f
(z)
i = f̃

(
∑

l ϕl(zl))
i (i ∈ N, z ∈ Xı̂).

c. For every i ∈ N : ϕi ≥ 0, Ti = [0, µi] with µi > 0 or Ti = R+.10

9Using notation (2.5).
10For example, this condition is satisfied if for every Xi is a non-negative orthant and ϕi

is a linear function strictly increasing in all variables. (Of course also compact Xi can be
considered.)



188 PIERRE VON MOUCHE, FEDERICO QUARTIERI AND FERENC SZIDAROVSZKY

Noting that, for any i ∈ N , the function R̃i : Ti → R is well-defined by

R̃i(z) := argmax f̃
(z)
i ,

further assume the following conditions hold.

d. Each function ϕi ◦ R̃i + Id is continuous and strictly increasing.
e. Each function ϕi ◦ R̃i is bounded.

Then:

(1) There exists a Nash equilibrium.
(2) If every ϕi ◦ R̃i is decreasing, then the game has a unique Nash equi-

librium.
(3) If for every i ∈ N and z ∈ Ti with ϕi(R̃i(z)) ≤ z it holds that ϕi ◦ R̃i is

decreasing on Ti \ [0, z], then the game has a unique Nash equilibrium.
�

Proof. Note that, with G = R, (2.6) holds, i.e. that every Ri has the factori-
sation property. Consider the correspondences Bi (i ∈ N) and B.

1. Theorem 4.3(1) guarantees that B has a fixed point. Theorem 3.2(1)
guarantees that the game has a Nash equilibrium.

2. Theorem 4.3(2) guarantees that B has a unique fixed point. The-
orem 4.3(1) guarantees that B is at most singleton-valued. Hence Theo-
rem 3.2(5) guarantees that the game has a unique Nash equilibrium.

3. Exactly the same proof as in part 2 by replacing there ‘Theorem 4.3(2)’
by ‘Theorem 4.3(4)’. �
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