ON A FIXED POINT PROBLEM TRANSFORMATION METHOD

PIERRE VON MOUCHE*, FEDERICO QUARTIERI** AND FERENC SZIDAROVSZKY ${ }^{* * *}$
*Wageningen Universiteit
Postbus 6700 EW Wageningen, The Netherlands
E-mail: pvmouche@gmx.net
${ }^{* *}$ IULM Università, Via Carlo Bo 1
Milano, Italy
${ }^{* * *}$ Dept. of Syst. Ind. Eng. University of Arizona, Tucson, AZ, USA

Abstract

We show how the fixed point problem for a special type of correspondence \mathbf{R} which satisfies a factorisation property can be handled by considering an associated more simple fixed point problem for a correspondence B with domain typically a subset of \mathbb{R}. In addition we analyse the fixed point problem for B under additional conditions on \mathbf{R} that guarantee that B is at most singleton-valued. In fact we generalize, improve and make more conceptual a game theoretic technique developed by Selten and Szidarovszky. Key Words and Phrases: Aggregative game, correspondence, fixed point theorem, Nash equilibrium.

2010 Mathematics Subject Classification: 47H10, 91A10.

1. Introduction

Given a game in strategic form with n players, its set of Nash equilibria equals the set of fixed points of the best reply correspondence \mathbf{R}. In case each strategy set is m-dimensional, this fixed point problem is a $m n$-dimensional one.

For oligopoly-like games, [9] and [12] independently where able to transform the fixed point problem for \mathbf{R} into an associated more simple fixed point problem for a correspondence B with domain in \mathbb{R}. This technique was used by various authors dealing with such games. ${ }^{1}$ One aim of our article is to improve this technique and to make it more conceptual and general. To this

[^0]end we divide it into two parts: 1) the definition of B and the relation between the two fixed point problems; 2) the analysis of the fixed point problem for B. Both parts will be performed in a correspondence setting where games do not play a role. Later on the results will be applied for games in strategic form to the best reply correspondence.

Theorem 3.2 identifies a quite general setting for which the first part continues to work. This setting is compatible with games in strategic form where for each player i his best reply correspondence depends on some weighted sum $\sum_{l} \varphi_{l}\left(x_{l}\right)$ (with values in an Abelian group G) of the strategies x_{l} of the other players; we refer to this correspondence as the reduced best reply correspondence \tilde{R}_{i}. In particular the setting contains all additively aggregative games, i.e., games where the payoff function of a player depends only on his own strategy and the sum of all strategies.

Another aim of our article is to study the fixed point problem for B (in case $G=\mathbb{R}$), though under additional assumptions which enable us to prove the existence of a fixed point of B by means of the intermediate value theorem. Applying our results to games, we obtain a Nash equilibrium existence result which has been proved in the literature only by means of the Nikaido-Isoda theorem ([4]) or related theorems which rely on Brouwer's fixed point theorem. The main assumption made is that each correspondence R_{i} is singleton-valued and that each function $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is continuous and strictly increasing. Among other things these assumptions entail the at-most-singleton-valuedness of B and simplifies the analysis. We also show that under the additional condition that every $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing there exists a unique Nash equilibrium. As far as we know this uniqueness result is new. It should be noted that in particular no differentiability assumption is made throughout the whole article.

2. Setting

Let n be a positive integer, ${ }^{2}$

$$
\begin{equation*}
N:=\{1, \ldots, n\} \tag{2.1}
\end{equation*}
$$

and let

$$
\varphi_{i}: X_{i} \rightarrow G(i \in N)
$$

be mappings from a non-empty set X_{i} into an Abelian group G.
Put

$$
\begin{equation*}
\mathbf{X}:=X_{1} \times \cdots \times X_{n} \tag{2.2}
\end{equation*}
$$

and for $i \in N$

$$
\begin{equation*}
\mathbf{X}_{\hat{\imath}}:=X_{1} \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_{n} \tag{2.3}
\end{equation*}
$$

We sometimes identify \mathbf{X} with $X_{i} \times \mathbf{X}_{\hat{\imath}}$ and then write $\mathbf{x} \in \mathbf{X}$ as $\mathbf{x}=\left(x_{i} ; \mathbf{x}_{\hat{\imath}}\right)$.

[^1]For $i \in N$ let $R_{i}: \mathbf{X}_{\hat{\imath}} \multimap X_{i}$ be a correspondence. The correspondence $\mathbf{R}: \mathbf{X} \multimap \mathbf{X}$ is defined by

$$
\begin{equation*}
\mathbf{R}(\mathbf{x}):=R_{1}\left(\mathbf{x}_{\hat{1}}\right) \times \cdots \times R_{n}\left(\mathbf{x}_{\hat{n}}\right) \tag{2.4}
\end{equation*}
$$

We write, for $i \in N,{ }^{3}$

$$
\begin{equation*}
T_{i}:=\sum_{l \in N \backslash\{i\}} \varphi_{l}\left(X_{l}\right) \tag{2.5}
\end{equation*}
$$

Define the mapping $\varphi: \mathbf{X} \rightarrow G$ by

$$
\varphi(\mathbf{x}):=\sum_{l \in N} \varphi_{l}\left(x_{l}\right)
$$

and let

$$
Y:=\varphi(\mathbf{X})
$$

Note that for every $i \in N$

$$
Y=T_{i}+\varphi_{i}\left(X_{i}\right)
$$

For $i \in N$, we say that R_{i} has the factorisation property if there exists ${ }^{4}$ a correspondence $\tilde{R}_{i}: T_{i} \multimap X_{i}$ such that for every $\mathbf{z} \in \mathbf{X}_{\hat{\imath}}$

$$
\begin{equation*}
R_{i}(\mathbf{z})=\tilde{R}_{i}\left(\sum_{l \in N \backslash\{i\}} \varphi_{l}\left(z_{l}\right)\right) \tag{2.6}
\end{equation*}
$$

Note that R_{i} is at most singleton-valued if and only if \tilde{R}_{i} is at most singletonvalued. Finally, let \mathcal{Y} be a subset of Y such that for all $\mathbf{x} \in \operatorname{fix}(\mathbf{R})$ one has $\varphi(\mathbf{x}) \in \mathcal{Y}$. Thus, for instance, $\mathcal{Y}=Y$ is always possible.

3. Transformation method

In the following definition we introduce our most important objects: $B_{i}(i \in$ $N)$ and B. This definition was inspired by the articles like the ones mentioned in the Introduction. The B_{i} are quite similar to what in [13, p. 42] are called the cumulative best reply correspondences.

Definition 3.1. Let $i \in N$ and suppose R_{i} has the factorisation property. The correspondence $B_{i}: \mathcal{Y} \multimap X_{i}$ is defined by

$$
B_{i}(y):=\left\{x_{i} \in X_{i} \mid y-\varphi_{i}\left(x_{i}\right) \in T_{i} \text { and } x_{i} \in \tilde{R}_{i}\left(y-\varphi_{i}\left(x_{i}\right)\right)\right\}
$$

If every R_{i} has the factorisation property, then the $B_{i}(i \in N)$ are welldefined and hence we are in a position to define the correspondences $\mathbf{B}: \mathcal{Y} \multimap$ \mathbf{X} and $B: \mathcal{Y} \multimap G$ by

$$
\mathbf{B}(y):=B_{1}(y) \times \cdots \times B_{n}(y), \quad B(y):=\varphi(\mathbf{B}(y))
$$

[^2]Theorem 3.2. Suppose every R_{i} has the factorisation property.
(1) $\varphi(\operatorname{fix}(\mathbf{R}))=\operatorname{fix}(B)$. So \mathbf{R} has a fixed point if and only if B has a fixed point.
(2) $\operatorname{fix}(\mathbf{R}) \subseteq \mathbf{B}(\operatorname{fix}(B))$.
(3) Let $y \in \mathcal{Y}$. If $\mathbf{x} \in \mathbf{B}(y)$ and $B(y)=\{y\}$, then $\mathbf{x} \in \operatorname{fix}(\mathbf{R})$.
(4) If B is at most singleton-valued on $\operatorname{fix}(B)$, then $\operatorname{fix}(\mathbf{R})=\mathbf{B}(\operatorname{fix}(B))$.
(5) If B is at most singleton-valued and has a unique fixed point, then \mathbf{R} has a unique fixed point. \diamond

Proof. 1. ' \supseteq ': suppose $y \in \operatorname{fix}(B)$. So $y \in B(y)=\varphi(\mathbf{B}(y))=\sum_{l \in N} \varphi_{l}\left(B_{l}(y)\right)$. Let $x_{i} \in B_{i}(y)(i \in N)$ be such that $y=\sum_{l \in N} \varphi_{l}\left(x_{l}\right)$. So $y=\varphi(\mathbf{x})$. This implies $x_{i} \in \tilde{R}_{i}\left(y-\varphi_{i}\left(x_{i}\right)\right)=R_{i}\left(\mathbf{x}_{\hat{\imath}}\right)(i \in N)$. Thus $\mathbf{x} \in \operatorname{fix}(\mathbf{R})$ and $y \in$ $\varphi(\operatorname{fix}(\mathbf{R}))$.
' \subseteq ': suppose $y \in \varphi($ fix $(\mathbf{R}))$. Let $\mathbf{x} \in \operatorname{fix}(\mathbf{R})$ be such that $y=\varphi(\mathbf{x})$. As $\mathbf{x} \in \operatorname{fix}(\mathbf{R})$ we have for every $i \in N$ that $x_{i} \in R_{i}\left(\mathbf{x}_{\hat{\imath}}\right)=\tilde{R}_{i}\left(\varphi(\mathbf{x})-\varphi_{i}\left(x_{i}\right)\right)=$ $\tilde{R}_{i}\left(y-\varphi_{i}\left(x_{i}\right)\right)$. It follows that $x_{i} \in B_{i}(y)(i \in N)$. Now $y=\sum_{i \in N} \varphi_{i}\left(x_{i}\right) \in$ $\sum_{i \in N} \varphi_{i}\left(B_{i}(y)\right)=B(y)$. Thus $y \in \operatorname{fix}(B)$.
2. Suppose $\mathbf{e} \in \operatorname{fix}(\mathbf{R})$. Note that $y:=\varphi(\mathbf{e}) \in \mathcal{Y}$. We prove that $y \in \operatorname{fix}(B)$ and $\mathbf{e} \in \mathbf{B}(y)$. For $i \in N$ we have $y-\varphi_{i}\left(e_{i}\right) \in T_{i}$. As $\mathbf{e} \in \operatorname{fix}(\mathbf{R})$, we have for every $i \in N$ that $e_{i} \in R_{i}\left(\mathbf{e}_{\hat{\imath}}\right)=\tilde{R}_{i}\left(y-\varphi_{i}\left(e_{i}\right)\right)$. So $e_{i} \in B_{i}(y)$ and hence $\mathbf{e} \in \mathbf{B}(y)$. From this, $y=\sum_{l \in N} \varphi_{l}\left(e_{l}\right) \in \sum_{l \in N} \varphi_{l}\left(B_{l}(y)\right)=B(y)$. Thus $y \in \operatorname{fix}(B)$.
3. Fix $i \in N$. Note that $\varphi(\mathbf{x})=\sum_{l \in N} \varphi_{l}\left(x_{l}\right) \in \sum_{l \in N} \varphi_{l}\left(B_{l}(y)\right)=B(y)$. As $B(y)=\{y\}, \varphi(\mathbf{x})=y$ follows. As $x_{i} \in B_{i}(y)$, we obtain $x_{i} \in \tilde{R}_{i}\left(y-\varphi_{i}\left(x_{i}\right)\right)$, as desired.
4. As part 2 holds, we still have to prove ' \supseteq '. So suppose $\mathbf{x} \in \mathbf{B}($ fix $(B))$. Let $y \in \operatorname{fix}(B)$ such that $\mathbf{x} \in \mathbf{B}(y)$. As $y \in B(y)$ and B is at most singleton-valued on $\operatorname{fix}(B)$, we have $B(y)=\{y\}$. So by part $3, \mathbf{x} \in \operatorname{fix}(\mathbf{R})$.
5. From parts 1 and 4 .

4. Analysis of B

The analysis in this section is divided into two steps. First we analyse the $B_{i}(i \in N)$ in Proposition 4.1 and then in Proposition 4.2 we analyse B. ¿From now on we shall always assume $\mathcal{Y}=Y$.

Proposition 4.1. Fix $i \in N$. Suppose $G=\mathbb{R}$ and $T_{i} \subseteq \mathbb{R}_{+}$. Suppose R_{i} has the factorisation property and is singleton-valued. ${ }^{5}$ Consider the correspondence $B_{i}: Y \multimap X_{i}$.
(1) Let $y \in Y$ and suppose $x_{i} \in B_{i}(y)$. Then $\varphi_{i}\left(x_{i}\right) \leq y$.

[^3](2) For all $z \in T_{i}: \tilde{R}_{i}(z) \in B_{i}\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)(z)+z\right)$. In particular $\tilde{R}_{i}(0) \in$ $B_{i}\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0)\right)$.
(3) For every $y \in Y: B_{i}(y) \neq \emptyset \Leftrightarrow y \in\left(\varphi_{i} \circ \tilde{R}_{i}+\operatorname{Id}\right)\left(T_{i}\right)$.
(4) If the function $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is injective, then $\varphi_{i} \circ B_{i}$ is at most singletonvalued and is singleton-valued on $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$.
(5) (a) If the function $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is increasing, then for all $y, y^{\prime} \in Y$ with $y<y^{\prime}$ and $x \in B_{i}(y), x^{\prime} \in B_{i}\left(y^{\prime}\right)$ one has $\varphi_{i}\left(x^{\prime}\right)-\varphi_{i}(x)<y^{\prime}-y$.
(b) If the function $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is strictly increasing, then $\varphi_{i} \circ B_{i}-\mathrm{Id}$ is strictly decreasing as a function on $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$
(6) If $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing and $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is strictly increasing, then for every $y, y^{\prime} \in\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$ with $y<y^{\prime}$ it holds that ${ }^{6} \varphi_{i}\left(B_{i}(y)\right) \geq$ $\varphi_{i}\left(B_{i}\left(y^{\prime}\right)\right)$.
Proof. Note that $B_{i}(y)=\left\{x_{i} \in X_{i} \mid \varphi_{i}\left(x_{i}\right) \in y-T_{i}\right.$ and $\left.x_{i} \in \tilde{R}_{i}\left(y-\varphi_{i}\left(x_{i}\right)\right)\right\}$.

1. As $T_{i} \subseteq \mathbb{R}_{+}$, one has $y-T_{i} \leq y$.
2. $B_{i}\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)(z)+z\right)=\left\{x_{i} \in X_{i} \mid \varphi_{i}\left(x_{i}\right) \in\left(\varphi_{i} \circ \tilde{R}_{i}\right)(z)+z-T_{i}\right.$ and $x_{i}=$ $\left.\tilde{R}_{i}\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)(z)+z-\varphi_{i}\left(x_{i}\right)\right)\right\}$. Thus $\tilde{R}_{i}(z) \in B_{i}\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)(z)+z\right)$.
3. ' \Rightarrow ': suppose $x_{i} \in B_{i}(y)$. Now $x_{i}=\tilde{R}_{i}\left(y-\varphi_{i}\left(x_{i}\right)\right)$ and $y-\varphi_{i}\left(x_{i}\right) \in T_{i}$. This implies $y=\varphi_{i}\left(x_{i}\right)+\left(y-\varphi_{i}\left(x_{i}\right)\right)=\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y-\varphi_{i}\left(x_{i}\right)\right)+\left(y-\varphi_{i}\left(x_{i}\right)\right) \in$ $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$.
' \Leftarrow ': by part 1 .
4. Suppose $y_{0} \in Y$ and $y, y^{\prime} \in\left(\varphi_{i} \circ B_{i}\right)\left(y_{0}\right)$. Let $x, x^{\prime} \in B_{i}\left(y_{0}\right)$ be such that $y=\varphi_{i}(x)$ and $y^{\prime}=\varphi_{i}\left(x^{\prime}\right)$. As \tilde{R}_{i} is singleton-valued it follows that $x=\tilde{R}_{i}\left(y_{0}-\varphi_{i}(x)\right)$ and $x^{\prime}=\tilde{R}_{i}\left(y_{0}-\varphi_{i}\left(x^{\prime}\right)\right)$. Thus
$y=\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y_{0}-\varphi_{i}(x)\right)+\left(y_{0}-\varphi_{i}(x)\right)=\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y_{0}-\varphi_{i}\left(x^{\prime}\right)\right)+\left(y_{0}-\varphi_{i}\left(x^{\prime}\right)\right)$. As $\varphi_{i} \circ \tilde{R}_{i}+$ Id is injective, it follows that $y_{0}-\varphi_{i}(x)=y_{0}-\varphi_{i}\left(x^{\prime}\right)$. So $\varphi_{i}(x)=\varphi_{i}\left(x^{\prime}\right)$. Thus $y=y^{\prime}$ and the first statement holds. Part 3 now implies the second statement.

5a. By contradiction suppose $y, y^{\prime} \in Y$ with $y<y^{\prime}, x \in B_{i}(y), x^{\prime} \in B_{i}\left(y^{\prime}\right)$ and $\varphi_{i}\left(x^{\prime}\right)-\varphi_{i}(x) \geq y^{\prime}-y$. Now $y^{\prime}-\varphi_{i}\left(x^{\prime}\right) \leq y-\varphi_{i}(x)$ and

$$
\begin{gathered}
\varphi_{i}\left(x^{\prime}\right)-\varphi_{i}(x)=\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y^{\prime}-\varphi_{i}\left(x^{\prime}\right)\right)-\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y-\varphi_{i}(x)\right) \\
=\left(\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y^{\prime}-\varphi_{i}\left(x^{\prime}\right)\right)+\left(y^{\prime}-\varphi_{i}\left(x^{\prime}\right)\right)-\left(\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y-\varphi_{i}(x)\right)+\left(y-\varphi_{i}(x)\right)\right)\right.\right. \\
+\left(\varphi_{i}\left(x^{\prime}\right)-\varphi_{i}(x)\right)+\left(y-y^{\prime}\right)<0+\varphi_{i}\left(x^{\prime}\right)-\varphi_{i}(x)+0,
\end{gathered}
$$

which is absurd.
5 b . This follows from parts 3,4 and 5 a .
6. From parts 2 and 3 it follows that B_{i} is singleton-valued on

$$
\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right) .
$$

[^4]7. By contradiction suppose $y, y^{\prime} \in\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$ with $y<y^{\prime}$ and $\varphi_{i}\left(B_{i}(y)\right)<\varphi_{i}\left(B_{i}\left(y^{\prime}\right)\right)$. Now $\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y-\varphi_{i}\left(B_{i}(y)\right)\right)=\varphi_{i}\left(B_{i}(y)\right)<$ $\varphi_{i}\left(B_{i}\left(y^{\prime}\right)\right)=\left(\varphi_{i} \circ \tilde{R}_{i}\right)\left(y^{\prime}-\varphi_{i}\left(B_{i}\left(y^{\prime}\right)\right)\right)$. As $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing, we have $y-\varphi_{i}\left(B_{i}(\underset{\sim}{2})\right)>y^{\prime}-\varphi_{i}\left(B_{i}\left(y^{\prime}\right)\right)$. As $\varphi_{i} \circ \tilde{R}_{i}+$ Id is strictly increasing it follows that $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(y-\varphi_{i}\left(B_{i}(y)\right)\right)>\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(y^{\prime}-\varphi_{i}\left(B_{i}\left(y^{\prime}\right)\right)\right)$. Thus $y>y^{\prime}$, which is a contradiction.

In Proposition 4.2 and in Theorem 4.3 we assume that every R_{i} is singletonvalued and has the factorisation property. Also we assume that $G=\mathbb{R}$ and for every $i \in N$ that $\varphi_{i} \geq 0$ and $T_{i}=\left[0, \mu_{i}\right]$ with $\mu_{i}>0$ or $T_{i}=\mathbb{R}_{+}$. This implies that $n \geq 2$, that $0 \in \varphi_{i}\left(X_{i}\right)(i \in N)$ and that $\varphi_{i}\left(X_{i}\right) \subseteq T_{j}$ for every $i, j \in N$ with $i \neq j$. We put

$$
N_{T}:=\left\{i \in N \mid T_{i}=\left[0, \mu_{i}\right]\right\}
$$

and fix $l \in N$ such that $\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0) \leq\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)(i \in N)$. Finally,

$$
\underline{X}:=\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0) .
$$

Proposition 4.2. Suppose every $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$ is an interval of \mathbb{R} with for $i \in N_{T}$ a well-defined maximum w_{i}. If $N_{T} \neq \emptyset$, then fix $k \in N_{T}$ such that $w_{k} \leq w_{i}\left(i \in N_{T}\right)$. Let $I:=\left[\underline{X},+\infty\left[\right.\right.$ if $N_{T}=\emptyset$ and $I:=\left[\underline{X}, w_{k}\right]$ if $N_{T} \neq \emptyset$. Consider the correspondences $B_{i}(i \in N)$ and B. Finally, suppose each correspondence $\varphi_{i} \circ B_{i}$ is at most singleton-valued.
(1) I is a non-empty interval.
(2) $I \subseteq \cap_{i \in N}\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$.
(3) $B \upharpoonright I$ is singleton-valued.
(4) If $\varphi_{l} \circ \tilde{R}_{l}+$ Id is increasing, then $B(y)=\emptyset$ for every $y \in Y \backslash I$. ${ }^{7}$
(5) $B(\underline{X}) \geq \underline{X}$.
(6) For every $i \in N \backslash N_{T}$ suppose that the function $\varphi_{i} \circ \tilde{R}_{i}$ is bounded. If $N_{T} \neq \emptyset$, then suppose $\varphi_{k} \circ \tilde{R}_{k}+$ Id is increasing.
(a) There exists $\bar{X} \in I$ with $B(\bar{X}) \leq \bar{X}$;
(b) If the function $B \upharpoonright I$ is continuous, then this function has a fixed point. \diamond

Proof. 1. This is trivial if $N_{T}=\emptyset$. Now suppose $N_{T} \neq \emptyset$. We prove that the inequality $\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0) \leq w_{k}$ holds.

Case where $l=k$: here it holds as $\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0) \in\left(\varphi_{l} \circ \tilde{R}_{l}+\mathrm{Id}\right)\left(T_{l}\right)$.
Case where $l \neq k$: as $\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0) \in \varphi_{l}\left(X_{l}\right) \subseteq T_{k}$ it follows that

$$
\begin{gathered}
\left.\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0) \leq\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)+\left(\varphi_{k} \circ \tilde{R}_{k}\right)\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)\right) \\
\leq \max \left(\varphi_{k} \tilde{R}_{k}+\mathrm{Id}\right)\left(T_{k}\right)=w_{k} .
\end{gathered}
$$

[^5]2. Case $N_{T}=\emptyset$: now $T_{i}=\mathbb{R}_{+}(i \in N)$. As $\left(\varphi_{i} \circ \tilde{R}_{i}+\operatorname{Id}\right)(\mathbb{R})$ is an interval and $\varphi_{i} \geq 0$, it follows that this interval contains $\left[\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0),+\infty[\right.$. So $\cap_{i \in N}\left(\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)(\mathbb{R})\right)$ contains $\cap_{i \in N}\left[\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0),+\infty[=[\underline{X},+\infty[=I\right.$.

Case $N_{T} \neq \emptyset$: for $i \in N_{T}$, as $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$ is an interval, it follows that this interval contains $\left[\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0), w_{i}\right]$. This implies $I=\left[\underline{X}, w_{k}\right]=$ $\left[\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0), w_{k}\right] \subseteq \cap_{i \in N_{T}}\left[\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0), w_{i}\right] \subseteq \cap_{i \in N_{T}}\left(\varphi_{i} \circ \tilde{R}_{i}+\operatorname{Id}\right)\left(T_{i}\right)$. Also $\left[\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0), w_{k}\right] \subseteq \cap_{i \in N \backslash N_{T}}\left[\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0), w_{k}\right] \subseteq \cap_{i \in N \backslash N_{T}}\left[\left(\varphi_{i} \circ \tilde{R}_{i}\right)(0),+\infty[\subseteq\right.$ $\cap_{i \in N \backslash N_{T}}\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$. Thus $I \subseteq \cap_{i \in N}\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$.
3. With Proposition 4.1(3) it follows that every $\varphi_{i} \circ B_{i}$ is singleton-valued on $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$. So every $\varphi_{i} \circ B_{i}$ is singleton-valued on $\cap_{j \in N}\left(\varphi_{j} \circ \tilde{R}_{j}+\mathrm{Id}\right)\left(T_{j}\right)$. Part 2 now implies that every $\varphi_{i} \circ B_{i}$ is singleton-valued on I. Thus also $B \upharpoonright I$ is singleton-valued.
4. As $\varphi_{l} \circ \tilde{R}_{l}+$ Id is increasing and $0=\min \left(T_{l}\right)$, we have $\varphi_{l} \circ \tilde{R}_{l}+\mathrm{Id} \geq$ $\left(\varphi_{l} \circ \tilde{R}_{l}+\mathrm{Id}\right)(0)$. Therefore Proposition $4.1(3)$ implies $B_{l}(y)=\emptyset$ for every $y \in Y$ with $y<\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)$. This implies that $B(y)=\emptyset$ for every $y \in Y$ with $y<\underline{X}$. So if $N_{T}=\emptyset$, then the proof is complete. Now suppose $N_{T} \neq \emptyset$. If $y \in Y$ with $y>w_{k}$, then, by Proposition $4.1(3), B_{k}(y)=\emptyset$ and therefore also $B(y)=\emptyset$.
5. With Proposition $4.1(2)$ we obtain $\left.B(\underline{X})=\sum_{j \in N}\left(\varphi_{j} \circ B_{j}\right)(\underline{X})\right) \geq\left(\varphi_{l} \circ\right.$ $\left.B_{l}\right)(\underline{X})=\left(\varphi_{l} \circ B_{l}\right)\left(\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)\right)=\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)=\underline{X}$.

6a. Case $N_{T}=\emptyset$: we prove that for every $i \in N$ there exists $\bar{X}_{i} \geq \underline{X}$ such that $\left(\varphi_{i} \circ B_{i}\right)(y) \leq \frac{y}{n}$ for all $y \geq \bar{X}_{i}$. (Then take, e.g., $\bar{X}:=\max \left\{\bar{X}_{i} \mid i \in N\right\}$.) So fix $i \in N$. By contradiction suppose there does not exist such an \bar{X}_{i}. This implies the existence of a sequence $\left(y_{j}\right)$ in $\left[\underline{X},+\infty\left[\right.\right.$ with $\lim _{j \rightarrow \infty} y_{j}=+\infty$ and $\left(\varphi_{i} \circ B_{i}\right)\left(y_{j}\right)>y_{j} / n$ for all j. Now for all j

$$
\varphi_{i}\left(\tilde{R}_{i}\left(y_{j}-\left(\varphi_{i} \circ B_{i}\right)\left(y_{j}\right)\right)\right)=\varphi_{i}\left(B_{i}\left(y_{j}\right)\right)>y_{j} / n
$$

It follows that $\lim _{j \rightarrow \infty} \tilde{R}_{i}\left(y_{j}-\left(\varphi_{i} \circ B_{i}\right)\left(y_{j}\right)\right)=+\infty$. As φ_{i} is bounded, this is absurd.

Case $N_{T} \neq \emptyset$: take $\bar{X}:=\left(\varphi_{k} \circ \tilde{R}_{k}+\mathrm{Id}\right)\left(\mu_{k}\right)$. As $\varphi_{k} \circ \tilde{R}_{K}+$ Id is increasing and in case $k \neq l$ it holds that $\bar{X} \geq \mu_{k} \geq\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0)$, it follows that $\bar{X} \in$ $\left[\left(\varphi_{l} \circ \tilde{R}_{l}\right)(0), w_{k}\right]$. From Proposition 4.1(2) it follows that

$$
\begin{gathered}
B(\bar{X})=\sum_{j \in N}\left(\varphi_{j} \circ B_{j}\right)(\bar{X})=\left(\varphi_{k} \circ B_{k}\right)\left(\left(\varphi_{k} \circ \tilde{R}_{k}\right)\left(\mu_{k}\right)+\mu_{k}\right) \\
+\sum_{j \neq k}\left(\varphi_{j} \circ B_{j}\right)\left(\left(\varphi_{k} \circ \tilde{R}_{k}\right)\left(\mu_{k}\right)+\mu_{k}\right) \\
=\left(\varphi_{k} \circ \tilde{R}_{k}\right)\left(\mu_{k}\right)+\sum_{j \neq k}\left(\varphi_{j} \circ B_{j}\right)\left(\left(\varphi_{k} \circ \tilde{R}_{k}\right)\left(\mu_{k}\right)+\mu_{k}\right) \leq\left(\varphi_{k} \circ \tilde{R}_{k}\right)\left(\mu_{k}\right)+\mu_{k}=\bar{X}
\end{gathered}
$$

6b. A consequence of parts 5, 6a and the intermediate value theorem.

Theorem 4.3. Suppose every R_{i} is singleton-valued and has the factorisation property, $G=\mathbb{R}$ and for every $i \in N$ that $\varphi_{i} \geq 0$ and $T_{i}=\left[0, \mu_{i}\right]$ with $\mu_{i}>0$ or $T_{i}=\mathbb{R}_{+}$. Also suppose every $\varphi_{i} \circ \tilde{R}_{i}$ is bounded and every $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is continuous and strictly increasing. Consider the correspondence B.
(1) B is at most singleton-valued.
(2) The correspondence B has a fixed point.
(3) If every $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing, then B has a unique fixed point.
(4) If for every $i \in N$ and $z \in T_{i}$ with $\varphi_{i}\left(\tilde{R}_{i}(z)\right) \leq z$ it holds that $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing on $T_{i} \backslash[0, z]$, then B has a unique fixed point. ${ }^{8} \diamond$

Proof. Note that every $\varphi_{i} \circ \tilde{R}_{i}$ also is continuous. Every $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$ is an interval of \mathbb{R}. As $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is strictly increasing, $\varphi_{i} \circ B_{i}$ is at most singleton-valued and $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(T_{i}\right)$ has in case $i \in N_{T}$ as maximum $w_{i}=$ $\left(\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}\right)\left(\mu_{i}\right)$. Let I be as in Proposition 4.2.

1. Apply Proposition $4.2(3,4)$.
2. Proposition $4.1(5 a)$ together with Proposition $4.2((2)$ guarantees that the function $B \upharpoonright I$ is continuous. Proposition $4.2(6 \mathrm{~b})$ applies and implies that this function has a fixed point. Thus also B has a fixed point.
3. As in the proof of part 1 we see that $B \upharpoonright I$ has a fixed point. We shall prove that this fixed point is unique. Then the proof is complete as by Proposition $4.2(4)$ we see that also B has a unique fixed point. Well, Proposition 4.1(6) implies that every $\varphi_{i} \circ B_{i}$ is decreasing on I. This implies that also $B \upharpoonright I$ is decreasing and so this function has a unique fixed point.
4. As in part 3, the proof is complete if we can prove that $B \upharpoonright I$ has a unique fixed point. By contradiction suppose that y, y^{\prime} with $y<y^{\prime}$ are fixed points of $B \upharpoonright I$. So we have $y=B(y)=\sum_{l} \varphi_{l}\left(B_{l}(y)\right)$. This implies that there exists $M \subseteq N$ with $\# M=n-1$ such that $\varphi_{m}\left(B_{m}(y)\right) \leq y / 2(m \in M)$. Therefore $\left(\tilde{R}_{m}-\operatorname{Id}\right)\left(y-\varphi_{m}\left(B_{m}(y)\right)\right)=2 \varphi_{m}\left(B_{m}(y)\right)-y \leq 0$. Hence, for every $m \in M$,

$$
\varphi_{m} \circ \tilde{R}_{m} \text { is decreasing on } T_{m} \backslash\left[0, y-\varphi_{m}\left(B_{m}(y)\right)\right]
$$

This, together with Proposition 4.1(5a), implies that for every $m \in M$

$$
\varphi_{m} \circ B_{m} \text { is decreasing on } Y \backslash[0, y] .
$$

Let $\{i\}=N \backslash M$. By Proposition 4.1(5b),
$\varphi_{i} \circ B_{i}-\mathrm{Id}$ is strictly decreasing.
It follows that $B-\mathrm{Id}$ is strictly decreasing on $Y \backslash[0, y]$. In the proof of part 1, we have seen that $(B-\mathrm{Id}) \upharpoonright I$ is continuous; this implies that $B-\mathrm{Id}$ is also strictly decreasing on $Y \backslash\left[0, y\left[\right.\right.$. So $B\left(y^{\prime}\right)-y^{\prime}<B(y)-y=0$, a contradiction with $B\left(y^{\prime}\right)=y^{\prime}$.

[^6]The above analysis of B becomes much more complicated in case the \tilde{R}_{i} are multi-valued. For such a situation we now give sufficient conditions for the existence of a fixed point of B by using a deep fixed point result of [3]:

Theorem 4.4. Suppose every R_{i} has the factorisation property, every X_{i} is a non-empty compact subset of $\mathbb{R}, G=\mathbb{R}$ and $\varphi_{i}=\mathrm{Id}(i \in N)$. If each correspondence $\varphi_{i} \circ \tilde{R}_{i}$ is upper hemi-continuous and has a decreasing singlevalued selection, then B has a fixed point. \diamond

Proof. To this situation the result in [3] applies and guarantees that \mathbf{R} has a fixed point. Theorem 3.2 implies that B has a fixed point.

5. A Nash equilibrium existence and uniqueness Result

In this section we apply Theorems 3.2 and 4.3 to a special class of games in strategic form.

We recall that a game in strategic form between $n(\geq 1)$ players is given by nonempty (strategy) sets $X_{i}(1 \leq i \leq n)$ and (payoff) functions $f_{i}: X_{1} \times \cdots \times$ $X_{n} \rightarrow \mathbb{R}(1 \leq i \leq n)$.

Consider a game in strategic form Γ. Using notations (2.1), (2.2), (2.3), we define for each player i (i.e., for every $i \in N$) and for every $\mathbf{z} \in \mathbf{X}_{\hat{\imath}}$ the (conditional payoff) function $f_{i}^{(\mathbf{z})}: X_{i} \rightarrow \mathbb{R}$ by

$$
f_{i}^{(\mathbf{z})}\left(x_{i}\right):=f_{i}\left(x_{i} ; \mathbf{z}\right)
$$

and the (best reply) correspondence $R_{i}: \mathbf{X}_{\hat{\imath}} \multimap X_{i}$ by

$$
R_{i}(\mathbf{z}):=\operatorname{argmax} f_{i}^{(\mathbf{z})}
$$

The correspondence $\mathbf{R}: \mathbf{X} \multimap \mathbf{X}$ is defined by (2.4). A Nash-equilibrium of Γ is a fixed point of \mathbf{R}. Note that $\mathbf{x} \in \operatorname{fix}(\mathbf{R})$, if and only if for all $i \in N, x_{i}$ is a maximiser of $f_{i}^{\left(\mathrm{x}_{\hat{\imath}}\right)}$.
Corollary 5.1. Consider a game in strategic form where the following conditions hold.
a. Every best-reply correspondence R_{i} is singleton-valued.
b. There exist $\varphi_{i}: X_{i} \rightarrow \mathbb{R}(i \in N)$ and $d^{9} \tilde{f}_{i}^{(z)}: X_{i} \rightarrow \mathbb{R}\left(i \in N, z \in T_{i}\right)$ such that $f_{i}^{(\mathbf{z})}=\tilde{f}_{i}^{\left(\sum_{l} \varphi_{l}\left(z_{l}\right)\right)}\left(i \in N, \mathbf{z} \in \mathbf{X}_{\hat{\imath}}\right)$.
c. For every $i \in N: \varphi_{i} \geq 0, T_{i}=\left[0, \mu_{i}\right]$ with $\mu_{i}>0$ or $T_{i}=\mathbb{R}_{+} .{ }^{10}$

[^7]Noting that, for any $i \in N$, the function $\tilde{R}_{i}: T_{i} \rightarrow \mathbb{R}$ is well-defined by

$$
\tilde{R}_{i}(z):=\operatorname{argmax} \tilde{f}_{i}^{(z)},
$$

further assume the following conditions hold.
d. Each function $\varphi_{i} \circ \tilde{R}_{i}+\mathrm{Id}$ is continuous and strictly increasing.
e. Each function $\varphi_{i} \circ \tilde{R}_{i}$ is bounded.

Then:
(1) There exists a Nash equilibrium.
(2) If every $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing, then the game has a unique Nash equilibrium.
(3) If for every $i \in N$ and $z \in T_{i}$ with $\varphi_{i}\left(\tilde{R}_{i}(z)\right) \leq z$ it holds that $\varphi_{i} \circ \tilde{R}_{i}$ is decreasing on $T_{i} \backslash[0, z]$, then the game has a unique Nash equilibrium. \diamond

Proof. Note that, with $G=\mathbb{R}$, (2.6) holds, i.e. that every R_{i} has the factorisation property. Consider the correspondences $B_{i}(i \in N)$ and B.

1. Theorem 4.3(1) guarantees that B has a fixed point. Theorem 3.2(1) guarantees that the game has a Nash equilibrium.
2. Theorem 4.3(2) guarantees that B has a unique fixed point. Theorem 4.3(1) guarantees that B is at most singleton-valued. Hence Theorem 3.2(5) guarantees that the game has a unique Nash equilibrium.
3. Exactly the same proof as in part 2 by replacing there 'Theorem 4.3(2)' by 'Theorem 4.3(4)'.

References

[1] R. Cornes, R. Hartley, Asymmetric contests with general technologies, Economic Theory, 26(2005), 923-946.
[2] J. Fraysse, Existence des équilibres de Cournot: Un tour d'horizon, Annales d'Économie et de Statistique, 1986, 9-33.
[3] N. Kukushkin, A fixed point theorem for decreasing mappings, Economics Letters, 46(1994), 23-26.
[4] H. Nikaido, K. Isoda, Note on non-cooperative games, Pacific Journal of Mathematics, 5(1955), 807-815.
[5] W. Novshek, On the existence of Cournot equilibrium, The Review of Economic Studies, 52(1)(1985), 85-98.
[6] K. Okuguchi, Existence of equilibrium for Cournot oligopoly-oligopsony, Keio Economic Studies, 35(2)(1998), 45-53.
[7] K. Okuguchi, F. Szidarovszky, The Theory of Oligopoly with Multi-Product Firms, Springer-Verlag, Berlin, second edition, 1999.
[8] F. Quartieri, Necessary and Sufficient Conditions for the Existence of a Unique Cournot Equilibrium, PhD thesis, Siena-Università di Siena, Italy, 2008.
[9] R. Selten, Preispolitik der Mehrproduktunternehmung in der Statischen Theorie, Sprin-ger-Verlag, Berlin, 1970.
[10] F. Szidarovszky, K. Okuguchi, On the existence and uniqueness of pure Nash equilibrium in rent-seeking games, Games and Economic Behavior, 18(1997), 135-140.
[11] F. Szidarovszky, S. Yakowitz, A new proof of the existence and uniqueness of the Cournot equilibrium, International Economic Review, 18(1977), 787-789.
[12] F. Szidarovszky, On the oligopoly game, Technical report, Karl Marx Universtiy of Economics, Budapest, 1970.
[13] X. Vives, Oligopoly Pricing: Old Ideas and New Tools, MIT Press, Cambridge, 2001.
[14] T. Yamazaki, On the existence and uniqueness of pure-strategy Nash equilibrium in asymmetric rent-seeking contests, Journal of Public Economic Theory, 10(2)(2008), 317327.

190 PIERRE VON MOUCHE, FEDERICO QUARTIERI AND FERENC SZIDAROVSZKY

[^0]: ${ }^{1}$ For example by $[11,5,2,10,6,7,13,1,14,8]$.

[^1]: ${ }^{2}$ Our results formally hold for $n=1$ when empty objects are interpreted correctly.

[^2]: ${ }^{3}$ The sum here is a Minkowski-sum.
 ${ }^{4}$ If such \tilde{R}_{i} exists, then it is unique.

[^3]: ${ }^{5}$ So also $\tilde{R}_{i}: T_{i} \multimap X_{i}$ is singleton-valued and henceforth we consider \tilde{R}_{i} as a function $T_{i} \rightarrow X_{i}$.

[^4]: ${ }^{6}$ Note that, by parts 5 and 6 , the sets $B_{i}(y)$ and $B_{i}\left(y^{\prime}\right)$ are singletons.

[^5]: ${ }^{7}$ And by part 3 we see that B is almost singleton-valued.

[^6]: ${ }^{8}$ Note that this result implies part 3 of the theorem.

[^7]: ${ }^{9}$ Using notation (2.5).
 ${ }^{10}$ For example, this condition is satisfied if for every X_{i} is a non-negative orthant and φ_{i} is a linear function strictly increasing in all variables. (Of course also compact X_{i} can be considered.)

