On a Fixed Point Problem Transformation Method CORRECTIONS AND SUPPLEMENTS

P. v. Mouche

July 22, 2014

Corrections:

- 1. Page 182, line $7 \downarrow$: (5) If **B** is at most singleton-valued and *B* has a unique fixed point, ...
- 2. *Page 182, line 11* ↑: From part 4.
- 3. *Page 182, line* $8 \uparrow$: ... we analyse *B*. From
- 4. *Page 183, line 14* \uparrow : $y_0 = ...$
- 5. *Page 183:* delete lines $2,3 \uparrow$.
- 6. *Replace footnote 6 on page 183 by:* Note that by part 4, the sets $\varphi_i(B_i(y))$ and $\varphi_i(B_i(y'))$ are singletons.
- 7. *Page 184, line 1* \downarrow : 6. By contradiction suppose ...
- 8. *Page 185, line* $9 \downarrow$: It follows that $\lim_{j\to\infty} (\varphi_i \circ \tilde{R}_i)(y_j (\varphi_i \circ B_i)(y_j)) = +\infty$. As $\varphi_i \circ \tilde{R}_i$ is bounded, this is
- 9. Page 186, line $15 \downarrow$: ... Proposition 4.2(2) guarantees that
- 10. Page 186, line $18 \downarrow$: 3. In the proof of part 2 we have seen that ...
- 11. page 188, line $1 \downarrow : ...$ function $\tilde{R}_i : T_i \rightarrow X_i$ is ...
- 12. page 188, line $8 \downarrow : ...$ is decreasing and **B** is at most singleton-valued, then ...
- 13. page 188, line $10 \downarrow : ... (3)$ If **B** is at most singleton-valued and for every $i \in N$ and ...
- 14. page 188, line $15 \downarrow : ... 4.3(2)$ guarantees ...
- 15. page 188, line $17 \downarrow : ... 4.3(3)$ guarantees ...

Comments:

Further reading:

If you think that some other things should be added here, then please let me know.