Equilibrium Uniqueness Results for Cournot Oligopolies Revisited CORRECTIONS AND SUPPLEMENTS

P. v. Mouche

April 17, 2014

Corrections:

- 1. On Page 212, line $4 \uparrow : ...$ that $Df_i(\mathbf{z})(x_i) = \cdots$
- 2. On Page 212, line $2 \uparrow : ...$ obtain $Df_i^{(\mathbf{z})}(a_i) = t_i(a_i, a_i + \underline{\mathbf{z}}) \ge t_i(a_i, b_i + \underline{\mathbf{z}}) \ge t_i(b_i, b_i + \underline{\mathbf{z}}) = ...$
- 3. On Page 213, repace Proposition 3 (with its footnote) and its proof by the following: Proposition 3. Sufficient for all conditional payoff functions of player *i* to be strictly quasi-concave and strictly pseudo-concave on $Int(X_i)$ is that
 - there exists a full marginal reduction $(t_i; q)$ of f_i ;
 - t_i is differentiable on $Int(X_i) \times Int(Y_q)$ and $D_1t_i, D_2t_i : Int(X_i) \times Int(Y_q) \rightarrow \mathbb{R}$ are continuous;
 - for all $x_i \in Int(X_i)$ and $y \in Int(Y_q)$ with $q_i x_i \leq y$

$$t_i(x_i, y) = 0 \implies (D_1 t_i + q_i D_2) t_i(x_i, y) < 0. \diamond$$

Proof. Fix $\mathbf{z} \in \mathbf{X}_i$. Write $a = \sum_l q_l z_l$. Consider $h = f_i^{(\mathbf{z})} \upharpoonright \operatorname{Int}(X_i)$. We have $Dh(x_i) = Df_i^{(\mathbf{z})}(x_i) = t_i(x_i, q_i x_i + a)$ and $D^2h(x_i) = D_1t_i(x_i, q_i x_i + a) + q_iD_2t_i(x_i, q_i x_i + a)$. So *h* is twice continuously differentiable function. For all $x_i \in \operatorname{Int}(X_i)$ we have $Dh(x_i) = 0 \Rightarrow D^2h(x_i) < 0$. Théorème 9.2.6. in Truchon (1987) guarantees that *h* is, as desired, strictly pseudo-concave. So *h* is strictly quasi-concave. As $f_i^{(\mathbf{z})}$ is continuous, it follows that also $f_i^{(\mathbf{z})}$ is strictly quasi-concave. \Box

- 4. *Page 213, line* $6 \uparrow : ...$ sufficient for the existence of an equilibrium **e** with $e_i \in W_i$ $(i \in N)$:
- 5. On Page 216, lines 15, 16 \downarrow : we obtain $\tilde{f}_i(x_i; \mathbf{e}_i) = \tilde{p}(x_i + a)x_i c_i(x_i) \le \tilde{p}(e_i + a)e_i c_i(e_i) = \tilde{f}_i(e_i; \mathbf{e}_i)$.

- 6. On Page 214, line $9 \downarrow : ...$ But, by (2)-(4) the contradiction ...
- 7. On Page 216, line $16 \uparrow$: ... and $c_i \upharpoonright X_i \cap [0, v]$. Theorem 2...
- 8. *Page 218, line 2* \downarrow : $X_i = \mathbb{R}_+$ the weak ...
- 9. Page 218, line $3 \downarrow$: ... equivalent. With Proposition 11(3) we see that the marginal ...
- 10. *Page 218, line 13* \downarrow : ... In case $X_i = \mathbb{R}_+$, (9) ...
- 11. Proposition 11 (4) should be: In case $X_i = \mathbb{R}_+$, (9) implies (11).
- 12. Page 218, line 16 \uparrow : that $Dp(y) \le 0$. As p is twice differentiable now also $Dp(0) \le 0$ follows.
- 13. Page 220, line 13 \uparrow : strictly quasi-concave and on $Int(X_i)$ strictly pseudo-concave.
- 14. Replace Proposition 17 and its proof by:

Proposition 17. Fix $i \in N$. Suppose c_i is increasing, p has a non-zero market satiation point v and p(y) = 0 for all $y \in Y$ with $y \ge v$. Also suppose p is continuous, decreasing and $p \upharpoonright [0, v[$ is log-concave and twice continuously differentiable. Suppose c_i is twice continuously differentiable on $X_i \cap [0, v[$ and continuous at v if $v \in X_i$. Finally suppose for all $y \in [0, v[$ and $x_i \in X_i$ with $x_i \le y$

$$Dp(y) - D^2c_i(x_i) < 0.$$

Then each conditional profit function of firm *i* is quasi-concave. And each conditional profit function $f_i^{(\mathbf{z})}$ with $\underline{\mathbf{z}} < v$ is strictly quasi-concave and is on $\text{Int}(X_i)$ strictly pseudo-concave. \diamond

proof. Fix **z** with $\underline{\mathbf{z}} < v$. Let $I = X_i \cap [0, v - \underline{\mathbf{z}}[$ and $h = f_i^{(\mathbf{z})} \upharpoonright \text{Int}(I)$. The function h is twice continuously differentiable. With $y = x_i + \underline{\mathbf{z}}$ we have $Dh(x_i) = Dp(y)x_i + p(y) - Dc_i(x_i)$ and $D^2h(x_i) = 2Dp(y) + D^2p(y)x_i - D^2c_i(x_i)$. As in the proof of Proposition 3 it follows for each $x_i \in \text{Int}(I)$ that $Dh(x_i) = 0 \Rightarrow D^2h(x_i) < 0$. Again it follows that h is strictly pseudo-concave on $\text{Int}(X_i)$ and therefore strictly quasi-concave on $\text{Int}(X_i)$. As $f_i^{(\mathbf{z})}$ is continuous, it follows that also $f_i^{(\mathbf{z})}$ is strictly quasi-concave. Finally, Proposition 13 implies that each conditional profit function is quasi-concave. \Box

- 15. On Page 221, delete Proposition 18 and the line above it.
- 16. Page 221, line $13 \downarrow$: ... that the following is true: ...
- 17. *Page 221, line 14* \downarrow : ... c_i is convex and increasing, then ...
- 18. *Page 221, line* $8 \uparrow : \dots$ maximiser of $(r_{i;\mathbf{z}} c_i) \upharpoonright W_i$ and
- 19. *Page 224, line 19* ↑: is increasing ...
- 20. *Page 225, line 11* \downarrow : ... and $p \upharpoonright [0, v]$ is twice ...

21. On Page 225, add the following condition to Theorem 9:

i. for every *i* and $\mathbf{z} \in \mathbb{R}^{n-1}$ with $\underline{\mathbf{z}} \in [0, v[$ the conditional profit function $f_i^{(\mathbf{z})}$ is strictly pseudo-concave on $[0, v - \underline{\mathbf{z}}[...]$

Comments:

Further reading:

P. v. Mouche and F. Quartieri. On the Uniqueness of Cournot Equilibrium in Case of Concave Integrated Price Flexibility. Journal of Global Optimization: DOI 10.1007/s10898-012-9926-z.

If you think that some other things should be added here, then please let me know.