Uniqueness of Coalitional Equilibria CORRECTIONS, COMMENTS AND FURTHER READING

P. v. Mouche

March 20, 2017

$\underline{\text{Corrections:}}$

- 1. Page 2, line $6 \downarrow : ...$ If each strategy set X^i is a compact and convex subset of a real Banach space, each payoff function ...
- 2. Page 2, line $15 \downarrow$: $\mathbf{R}_{\mathcal{C}}$ is proper, convex-valued, closed-valued ...
- 3. Page 2, line 16 \downarrow : applying the fixed point theorem of Bohnenblust and Karlin.
- 4. Page 2, line $21 \downarrow : \ldots$ with respect to x^i exists \ldots
- 5. Page 3, condition 2 of Theorem 4: If p is differentiable with p' < 0 and each cost function is differentiable and strictly convex, then the game has at most one interior C-equilibrium.
- 6. Page 3, lines $3-6\uparrow$:... is concave. To see it is, we first note we first note that the function $q \sim p(z+q)q$ (on $\sum_{l \in S} X^l \subseteq \mathbb{R}_+$) is a decreasing concave function of q multiplied by q which is known to be also concave. So the first sum being a composition of the linear function $\mathbf{a}^{C_i} \mapsto \sum_{l \in C_i} a^l$ with that concave function also is concave.
- 7. Page 3, line $1 \uparrow : B_K := \{ \mathbf{a}^S \in R^S \mid \sum_{l \in S} a^l = K \}$
- 8. Page 4, line $2 \downarrow : \ldots$ convex subset of $\mathbb{R}^S \ldots$
- 9. Page 4, line $9 \downarrow: c^{i'}(m^i(K_1)) < c^{i'}(m^i(K_2))$ for all *i*.
- 10. Page 4, line $17\uparrow:\ldots=p'(y_{\star})w_{\star}^{S}+\ldots$
- 11. Page 4, line 13 \uparrow : Because the function $\mathcal{K}' \to \mathbb{R}$ defined by

<u>Comments</u>: Theorem 2(2) even holds without assuming that φ is strictly increasing. Here is the new version:

Theorem 2 Consider a game in strategic form Γ where each strategy set X^i is an interval of \mathbb{R} containing more than one point. Fix a coalition structure \mathcal{C} . Suppose for each $S \in \mathcal{C}$ and $i \in S$ that the partial derivative of the function F^S with respect to x^i exists as an element of $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$. Furthermore, suppose there exists an increasing function $\varphi : \mathbf{X} \to \mathbb{R}$ and with $Y := \varphi(\mathbf{X})$, for each $S \in \mathcal{C}$ and $i \in S$ a function $\mathcal{T}^i_S : X^i \times Y \to \overline{\mathbb{R}}$ that is strictly decreasing in its first and decreasing in its second variable such that for each $\mathbf{x} \in \mathbf{X}$

$$\frac{\partial F^S}{\partial x^i}(\mathbf{x}) = \mathcal{T}^i_S(x^i, \varphi(\mathbf{x}))$$

holds. Then, there exists at most one C-equilibrium. \diamond

Proof. - Let \mathbf{x}_* and \mathbf{x}_{\bullet} be \mathcal{C} -equilibria. We may suppose that $y_* := \varphi(\mathbf{x}_*) \geq \varphi(\mathbf{x}_{\bullet}) =: y_{\bullet}$.

First, we prove that for all $S \in \mathcal{C}$ and $i \in S$ the inequality $x_*^i \leq x_{\bullet}^i$ holds. If $x_*^i = \inf X^i$ or $x_{\bullet}^i = \sup X^i$, then this result holds. Otherwise, x_*^i is not a left boundary point of X^i and x_{\bullet}^i is not a right boundary point of X^i . Because \mathbf{x}_* is a \mathcal{C} -equilibrium, \mathbf{x}_*^S is a maximizer of the function $F_{\mathbf{x}_*^S}^S$. This implies that x_*^i is a maximizer of the function $x^i \mapsto F^S(x^i; \mathbf{x}_*^i)$ and therefore it follows that $0 \leq \frac{\partial F^S}{\partial x^i}(\mathbf{x}_*) = \mathcal{T}_S^i(x_*^i, y_*)$. By the same token, $0 \geq \frac{\partial F^S}{\partial x^i}(\mathbf{x}_{\bullet}) = \mathcal{T}_S^i(x_{\bullet}^i, y_{\bullet})$. Therefore, $\mathcal{T}_S^i(x_*^i, y_*) \geq \mathcal{T}_S^i(x_{\bullet}^i, y_{\bullet})$. Because $y_{\bullet} \leq y_*$, we have $\mathcal{T}_S^i(x_*^i, y_{\bullet}) \geq \mathcal{T}_S^i(x_*^i, y_*)$. Thus, $\mathcal{T}_S^i(x_*^i, y_{\bullet}) \geq \mathcal{T}_S^i(x_{\bullet}^i, y_{\bullet})$. Because \mathcal{T}_S^i is strictly decreasing in x^i we have $x_*^i \leq x_{\bullet}^i$. Now we even may conclude that $\mathbf{x}_* \leq \mathbf{x}_{\bullet}$ and thus $\varphi(\mathbf{x}_*) \leq \varphi(\mathbf{x}_{\bullet})$. Now, as above, for all $\overline{S} \in \mathcal{C}$ and $i \in S$ the inequality $x_{\bullet}^{i} \leq x_{*}^{i}$ holds. Thus $\mathbf{x}_{\bullet} = \mathbf{x}_{*}$. \Box

Further reading:

M. Finus, P. v. Mouche and B. Rundshagen. On Uniqueness of Coalitional Equilibria. In: Contributions to Game Theory and Management. Volume VII, 51-60, 2014. Editors: L. Petrosjan, N. Zenkevich. St. Petersburg State University. ISSN 2310-2608.

If you think that some other things should be added here, then please let me know.