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Abstract

Vehement international capital flows may make exchange

rates unstable. Crises will occur. With a feedback system

approach, using Fourier spectra, a criterion for instability

is found. A first order and a second order system are

treated. Also the correlation time of the flow may be

indicative. The width of the power density spectrum

should be tested as an indicator for the stability of

exchange rates.
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Introduction

One of the most feared phenomena in economic life is an exchange rate crisis, a

sudden collapse of the value of the currency of a country. If foreign investors lose their

confidence, some of them will withdraw. Then the incoming capital flow diminishes, so that

foreign money becomes rare and therefore expensive. This means that the home currency

loses its value for foreign parties. Then more foreign investors will withdraw, so that the

incoming capital flow decreases further and the home currency falls more and more. The

end of this scenario is a collapse of the exchange rate and a long term disturbance of the

capital market and the investments. Usually a long time before a crisis the balance of

payments will show a shortage of export with respect to the import, so that the excess of

incoming capital with respect to outgoing capital supplies the foreign money that is needed.

The country that spends above its station will easily be at risk. In the same way an excess of

export will be safe, as the country itself will be able to manage its exchange rate by

controlling the flow of the outgoing investments.

Of course there are more factors. Stabilizing influences may be the confidence by

tradition, the control by central banks of the capital flows with buffer stocks and the

coordination by the IMF. Wage demands, inflation and other matters may affect the

confidence and cause a risk. A country may strive after a stronger growth as a long term

policy, it may promote its export or tax the import, or manage its inflation policy. All these

instruments may influence the stability of the exchange rate. But predicting exchange rate

crises on all these grounds may remain a precarious thing. So an indicator for the stability of

a currency would be rather useful. Provided that an indicator does not influence the system it

describes, it may warn and enable responsible authorities to take action. As an indicator

works self fulfilling however, one should be careful not to undermine the stability of the

system by its own influence.

After all this we raise our central question: how to construct a number that indicates
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how stable the exchange rate is. We will try to find an indicator on the basis of general

principles of system dynamics. The capital flows that cause the risk of a collapse may be

described with a dynamic system, that may be more or less stable. Of course political

decisions will never be described by any dynamic system, as they concern the expression of

a will. But a market, with the decisions of a multitude of people, may very well behave like

a dynamic system with its own features of stability.

Starting points

We begin by considering the behavior of the international capital flows as a Markov

process: the change in the system is a function of its actual situation only. The history does

not matter. No deeper dynamics will be supposed. So only first order derivatives may be

involved. If one is interested in a quantity y that is a small fluctuation with respect to a large

and constant background, the system we look for may be linearized. As a first approach we

propose the equation

dy / dt = p . ( u – y ) .               (1)

Suppose that a fly walks over a computer screen horizontally with some random velocity. Its

position is u. With the mouse and cursor at position y we try to follow it. We see the

deviation (u-y) and give the cursor a velocity dy/dt that is proportional to the deviation. The

constant p is a real number. The problem described is a feedback system: the reaction dy/dt

is adjusted on the basis of the observation of (u-y). In the same way as the walking fly

disturbs our distance, the financial market is a system that is disturbed day after day by

economic messages, by political news, by rumors and so on. So for international investors

there arises every day a changed situation which causes them to react with an action dy/dt ,

which is stronger as their desired situation (u) deviates more from their actual situation (y).

They strive to diminish the difference between the actual situation and that what they have

in mind. Now we define y more precisely. Let Y be the net capital flow to a country in one

day (incoming minus outgoing). We consider only the capital flow as generated by a free

market. The interventions by central banks or the IMF are kept out of consideration, because

they are governed by political decisions. Of course these interventions may stabilize

exchange rates. But as soon as the market becomes unstable, which means that any small

cause may lead to a disruption of the capital flows, the central banks are lost. Then their

buffer stocks will be insufficient to prevent a crisis. Our system dynamics approach should

deal with the behavior of the market. We denote the average value of Y over a long period

as <Y> . The fluctuations are now given by y = Y - <Y> . The disturbance u may have all

kinds of causes. We let these an open question. With these starting points we may formulate

our central problem: is it possible to find a criterion that determines how far the market is

stable or how far there is the risk of a crisis?

Dynamic behavior of (1)

             We suppose that the system is brought out of equilibrium by an initial step u, from

u=1 at t<0 to u=0 at t>0 . Then y begins in t=0 with y(0)=1. We get dy/dt = -p.y . The

solution is y=exp(-p.t). This solution is stable for p>0 and unstable for p<0 . The critical

value p=0 marks the transition from a stable situation to an unstable one.

             Now we use Fourier integrals (in all the integrals the range will be from - ∞ to + ∞ ):



             Y(ω) = ∫ y(t) exp(i.ω.t) dt ,                                               (2)

and

             U(ω) = ∫ u(t) exp(i.ω.t) dt .                                               (3) 

The theory of Fourier integrals [ref. Butkov, p. 260-262] states that

             y(t) =  (1/2π) ∫ Y(ω) exp(-i.ω.t) dω ,                                (4)

and

             u(t) =  (1/2π) ∫ U(ω) exp(-i.ω.t) dω .                                (5)

We substitute (4) and (5) in (1) and obtain

             ∫ [(-i.ω+p).Y – p.U] exp(-i.ω.t) dω = 0 ,                           (6)

so that

             Y = U p / (p-i.ω) .                                                             (7)

We pass to the power density spectrum Y(ω).Y*(ω) with

             Y.Y* = U.U* p
2
 / (p

2
 + ω2

) .                                             (8)

Here Y* denotes the complex conjugate of Y. We do not make any assumption on the

causes of the disturbance u but that the stream of incidents and rumors leads to white noise:

             U.U* = a
2 
,                                                                         (9)

where a is a constant, real number. Now we know the power density spectrum of y(t) by

             Y.Y* = a
2
 p
2
 / (p

2
+ω2

) .                                                    (10)

With the expression (10) we define two numbers. The maximum value A of Y.Y* is found

for ω = 0 and is

             A := ( Y.Y*)max = a
2 
.                                                         (11)

[note: When using a Fourier transform procedure on a computer one finds for Y often a

sharp spike at ω = 0 . This concerns the average value of y(t). Because of our definition of y
we expect Y(0) = 0 . Of course a spike has to be omitted before the calculation of A.]

The surface B amounts to

             B := ∫ Y(ω).Y*(ω) dω                                                       (12)

                  = a
2
 ∫ p2/ (p2+ω2

) dω   = a2.p.π  .



Next we define the effective width W of the spectrum by

             W := B / A = p.π .                                                             (13)

As we have seen the limit of stability is given by p = 0 . Therefore we may conclude from

(13) that the effective width W will indicate how far the system is away from instability. A

large value of W indicates a wide spectrum and a large value of p. Then the market reacts

stable on incidents. A small value of W indicates a narrow spectrum and a small value of p.

Then the market may be near to instability. So the effective width of the power density

spectrum of y(t) may be an indicator for the risk of unstable exchange rates. It is not

necessary that a crisis occurs exactly at W=0. Near the instability limit a triviality may give

the final kick into the unstable domain.

             A variant on this is the following. For foreign capital there is a characteristic time T

to stay in a country (T in days). We may define this as follows: T = (the total amount of

foreign capital invested in the country) / (the net capital flow each day) . Now the expression

W’ with

             W’ = W.T                                                                          (14)

is a dimensionless number. Probably W’ is a better indicator for instabilities in exchange

rates than W . A third indicator may be defined as follows. Establish W0 , the value of W at a

moment when the export and import are in balance. Then the ratio W / W0  may be an

indicator for instability. Has it a critical value at which a crisis is to be expected? Only an

empirical investigation of historical crises may be conclusive on what the best variant is.

A second order model

             After the simple model of (1) we investigate a second order model. If in the

spectrum Y specific frequencies occur, one may decide to use a model of second order. We

describe the harmonic oscillator with damping

             d
2
y /dt

2
 + k.dy /dt + ω0

2
.y = u .                                         (15)

The parameters k and ω0  are constant, real numbers. We investigate again the stability with

u=0 and a test function y=exp(λ.t). This yields the characteristic equation

             λ2 + k.λ + ω0
2
 = 0 .                                                            (16)

or

             λ12 = (-k + √ (k
2
 – 4.ω0

2
)) / 2 .                                           (17)

We distinguish three situations:

(I) k
2
 < 4ω0

2
; oscillation with growth or damping; only stable for k > 0

(II) k
2
 = 4ω0

2
; critical growth or damping; exponential; stable for k > 0

(III) k
2  
> 4ω0

2
; exponential behavior; stable for k > 0 .

In all cases there is only stability when k>0. So the case k = 0 marks the limit of stability.

             We calculate the spectrum, in the same way as the derivation of (7):



             Y(ω) = U(ω) / ((ω0
2
 – ω2

) – i.ω.k)                                    (18)

and

             Y.Y* = U.U* / ( (ω0
2
 – ω2

)
2 
+ω2

.k
2
) .                               (19)

We note that the power density spectrum may have a sharp peak for small values of k. At the

limit of stability k=0 we even observe a singularity. Then Y.Y* goes to infinity when

ω=+ω0. The maximum value A of the power density spectrum (see (11)) may depend

strongly on the value of k. Now we will not calculate the surface B (see (12)). But it is easy

to verify that the ratio B/A will tend to 0 as the system approaches its limit of stability. In the

same way as for the first order system of (1) the effective width W = B / A of the power

density spectrum may serve as an indicator for the stability of the system.

             A spectrum with more peaks shows that there are several dominant frequencies

present in the problem. Then the sharpness of each peak should be investigated separately.

The sharper a peak is, the nearer the corresponding oscillation approaches the limit of

stability. But it seems unlikely that a diffuse system like a capital market could yield a very

refined structure in the spectrum.

Correlation times

             As we see a narrow spectrum corresponds with the danger of instability. Let us

return to the simple system of (1). The instability limit is p=0. Then dy/dt =0, which means

that the system does not return to equilibrium after a disturbance. Generally the threat of

instability corresponds with a large time that the system needs to return to equilibrium. Then

it should be expected that the value of y(t) correlates with a displaced y(t+τ) after a long
displacement time τ. We will derive a correlation function out of the power density spectrum

with the aid of a convolution theorem [ref. Butkov, p. 269]. Suppose that we have obtained

some power density spectrum Y.Y* of the free market capital flow. Then, with the method

of (4), we calculate the reverse Fourier transform γ:

             γ(τ) = (1/2π) ∫ Y(ω).Y*(ω) exp(-i.ω.τ) dω                       (20)

and we substitute Y* according to (2) until

             γ(τ) = (1/2π) ∫ Y(ω) exp(-i.ω.τ) dω ∫ y(t) exp(-i.ω.t) dt .  (21)

We change the order of integration to

             γ(τ) = (1/2π) ∫ dt y(t) ∫ Y(ω) exp(-i.ω.(t+τ)) dω .              (22)

We see with (4) that the integral at the right is equal to 2.π.y(t+τ) so that

             γ(τ) = ∫ y(t).y(t+τ) dt .                                                        (23)

The backward transformed power density spectrum is the correlation integral for self

correlation after displacement over a time τ . Formula (23) can be seen as the equivalent of a
correlation coefficient:



             γ(τ) ~ Σi y(ti).y(ti+τ) .                                                        (24)

In formula (23) the function y(t) is correlated with itself after a displacement over a time τ .
When one takes a large value of τ , the correlation will be small. When τ = 0 the correlation
will be at its maximum. There will exist a typical correlation time ∆t at which γ will reach
the 1/e value of its maximum:

             γ(∆t) / γ(0) = 1/e .                                                              (25)

The characteristic time ∆t is nearly the time that disturbances in y(t) need to extinguish.
             Finally we mention a general property of spectra. If a spectrum has a width ∆ω ≈ W,

this is related to the correlation time ∆t by an uncertainty relation

             ∆ω.∆t ≈ π .                                                                        (26)

This relation is universal for Fourier spectra. It may be understood as follows. Two

oscillations, the one with angular frequency ω and the other with ω+∆ω have the same phase
in t=0. After a time t the difference in phase ϕ is ∆ϕ = t.∆ω. When ∆ϕ = π, the two
oscillations will have lost their phase correlation. Then the time interval has been ∆t = π/∆ω,
which is the correlation time. If a function y(t) has a typical correlation time ∆t, then its
spectrum Y(ω) has a width of nearly

             ∆ω ≈ π / ∆t .                                                                      (27)

For an illustration of this principle we remember the response on a unit step y = exp(-p.t) of

the system of (1). With (13) we see that p = W/π and in (26) ∆t ≈ π/W so that

y(∆t) = exp(-p.∆t) ≈ 1/e. The correlation time is nearly the time needed to let extinguish the
disturbance. Now that we have verified (26) for a spectrum around ω=0 we will see what
happens if the peak is displaced over a distance ϖ in the spectrum. Then we calculate the
new y(t) with (4) and use Y=Y(ω-ϖ). We obtain ynew(t)=yold(t).exp(-i.ϖ.t). A displacement in
the spectrum corresponds with an oscillation in the time-signal. The correlation γ of (23)
may become an oscillation within an enveloping curve that decreases. Then the enveloping

curve retains its characteristic correlation time and the uncertainty relation (26) remains

valid.

             Let us observe again this uncertainty relation. A narrow spectrum has automatically

a large correlation time. Then a system approaches instability as disturbances take a longer

time to extinguish. So very generally a narrow spectrum indicates that instability is near. In

the same way a wide spectrum corresponds with a short correlation time. Then disturbances

extinguish rapidly and the system is stable.

Generalization

             From now we forget everything on the special models we have seen. We will try to

formulate an approach to predict currency crises. We measure the fluctuation y(t) in the net

capital flow that enters a country each day. Only the flow from the free market is taken into

account. We determine the spectrum Y(ω) and calculate the power density spectrum Y.Y* .
We calculate the effective profile width W according to the definitions of (11), (12) and



(13). We repeat this procedure for a number of different situations, as normal, stable

situations and unstable situations, preceding historic crises of exchange rates. It is our

hypothesis now that the effective profile width W, or a derivative of it, may be a good

predicting indicator for instabilities in the exchange rates, especially of countries with a

serious shortage of export on the balance of payments. Who accepts the challenge to test this

hypothesis with historical time series?

Conclusion

             When the trade balance of a country has a shortage of export, the incoming capital

flow may compensate therefore. Such a situation leads easily to instabilities in exchange

rates. Central banks or the IMF may try to stabilize the situation with buffer stocks, but they

will lose control when the free market withdraws its capital supply on a large scale. Then a

crisis is inevitable. Therefore an indicator will be useful that measures how unstable the

market is and so predicts the risk of a collapse. We have proposed to use the width of the

Fourier spectrum of the fluctuations in the free market capital flow as an indicator for the

stability of this market. Two simple special models indicate that this approach may lead to

successful predictions. But also an argument on correlation times in relation to unstable

markets confirms that the width of a spectrum may be a reliable tool to establish the risk of a

collapse.
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