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Abstract.

Zipf's law applies to word frequencies in linguistics, to the population of cities, to DNA base
pair sequences and a number of other situations. In a variety of problems where a large
number of objects is distributed over an infinite sequence of clusters, a relation between
rank k of each cluster and its population n is found according to n~1/k. Using a multinomial
distribution we argue that this relation is the limit case of an asymptotically increasing
entropy. Zipf's law may therefore be based on a simple argument that comes to the
maximization of the entropy under the restriction that n describes a summable series for
k→ ∞.

keywords: statistical linguistics, Zipf, hyperbolic distribution, entropy, population of cities, DNA

Introduction
It was demonstrated by Zipf [1]-[3] that the frequencies of words used in language follow a

remarkable regularity. If one arranges the words into a sequence with decreasing frequency n, the product
of n and the rank number k (k=1, 2, 3, …) is nearly constant: n~1/k. In present day English a good
accuracy has been established [4], as well as in Dutch [5]. The same regularity applies to the number n of
inhabitants of the rank of large cities in several countries [6], to the frequencies n of noncoding DNA base
pair sequences [7] and to a wide variety of other phenomena [2]. A generalized formulation is n~1/kα with
α≠1, but in most cases the value of α is not much different from 1. In a random situation where many
objects are clustering into a infinite rank of sets, the number n in each set tends to follow a regularity with
the rank number k according to n~1/k. Fedorowicz [8] traced several theoretical approaches to the
problem. Some authors [2], [9] develop more or less detailed models on the special features of the
problem under consideration. Well known is the model for word frequencies by Mandelbrot [9, pp. 239-
244]. He assumes a lexicographical tree for the hierarchical process of choosing words. By generating
nonsense words Li [10] finds the formation of a Zipf distribution. He concludes that in linguistics the
Zipf-like law is purely due to the choice of the rank as the independent variable and that the law in natural
language is not of a profound character.

The main problem with ad hoc reasoning on special situations is that the law exhibits itself in a
number of phenomena that are not related to each other in their special mechanisms or features. Therefore
one would expect a more general underlying principle, in spite of special features. Because we are dealing
with the distribution of many objects over a rank of clusters, one may expect to find some entropy related
rule: a Zipf-like law should have a large probability and therefore be general for various cases of
stochastic distribution. Simon [11] derives for the linguistical problem a distribution n~1/kα on the basis of
a beta function and assuming that for large rank numbers the probability of finding a new word is
constant. For the population problem Hill [12] proposes an allocation of people according to the Bose-
Einstein form, which is the most critical assumption in his derivations. Besides this the sophisticated level
of his mathematical derivations suggests a high degree of complication, which in our opinion rather
contrasts with the generality and simple character of Zipf's law. The same comment may be given on



Sichel's [13] derivation of a word frequency law and his introduction of a new family of compound
Poisson distributions. Chen [14] presents a generalization of the work by Hill [12], using the multinomial
distribution as a basis. The latter starting point seems to be the most universal one. In our opinion
however on the same general basis a rather simple reasoning can be developed which leads to Zipf's law
with much less effort.

Theory
For reasons of simplicity we discuss the problem of the distribution of words in language,

analogous to the distribution of balls over a number of urns, which problem may easily be translated into
other Zipf-like problems. The random distribution of N balls over a number K of equal urns obeys a
multinomial probability function (see [15])

P = N! / KN               (1)
       n1! n2! …nK!

where N = n1 + n2 + … + nK. We simplify P to a logarithm ln P with the Stirling formula, valid for large n:

ln n! ≈ n ln n - n , (2)

which yields
                            K

ln P = a - Σ (nk ln nk) ; a = N (ln N - ln K) . (3)
                           k=1

With the use of the Lagrange multiplier method in nk - space (see appendix) it is proven that the most
probable distribution is a flat one, the uniform distribution

n1 = n2 = … = nK . (4)

This results from maximizing ln P under the condition that the total number N is given. The uniform
distribution implies that the maximum of equipartition between the urns has the largest probability, as is
well known.

In our problem of word frequencies however the distribution cannot be uniform, because it has to
be summable for k→ ∞. If we represent the distribution by the function n(k) , we conclude that in the tail,
asymptotically for k→ ∞ , the function should converge more rapidly than according to

n(k) = c/k ; c = constant. (5)

This is the limit of the weakest summable convergence. Now one may suspect intuitively that the
maximum of equipartition, and therefore of ln P , should be reached for the weakest allowed convergence
of n(k). On a log-log scale the summability limit of (5) corresponds with a slope of -π/4 rad :
ln n = ln c - ln k .

So at this point we have the problem that maximizing ln P in (3), under the condition that N is
given, yields a uniform distribution: the scattering of balls on a half infinite interval. As stated already, we
are dealing with clustering and therefore with a summable convergence of n(k). So the summability
should be brought into the Lagrange method by means of an additional summability condition.

Summability
The requirement that nk should be a summable series when we extrapolate for k→ ∞ can be

expressed by the criterion



lim (ln nk) / (ln k) < -1 . (6)
          k→ ∞

This statement is easily proven by writing (ln nk ) / (ln k ) ≤ -1-ε , for positive ε and sufficiently large k.
The criterion discriminates on α in n~1/kα  , when α≠1. The case of n k

  ~ l/k yields a divergent sum, while
nk ~ 1/k.(ln k)α  with α > 1 converges. Therefore a criterion with (ln nk ) / (ln k )→ -1 would yield an
undefinite situation. For the moment we neglect this finesse. We will return to this subject in the
discussion.

From (6) we derive

lim     - nk ln nk   > 1 (7)
           k→ ∞      nk ln k 

so that for sufficiently large k now - nk ln nk > nk ln k .
Then no summable entropy (see (3)) will exist unless the expression

A = Σ nk ln k (8)
        k

constitutes a finite number. Now the equation (8), with a finite A, expresses the requirement of
summability we sought for.

Results
Now we maximize ln P in (3) under the condition that N is limited, combined with the

summability condition (8); see appendix. The resulting class of distributions obeys the power law

n(k) = ε N / k(1+ε) ; ε > 0 . (9)

We conclude that a power law according to (9) maximizes the entropy. On a log-log scale the power law
corresponds with a fixed slope. More rapid schemes of convergence, like an exponential one, would have
an increasing slope downwardly as k→ ∞ and therefore would allow less equipartition.

Next we will demonstrate that the entropy expression ln P , as described by (3), increases as in (9)
the exponent ε decreases towards 0. First we note that (9) can be integrated:

∞
∫  n(k) dk = N . (10)

           1
Replacing also in (3) the finite sum by the integral

   ∞
ln P = a - ∫  n ln n dk (11)

  1
and substituting (9) we obtain after a straightforward integration:

ln P = N (1 + 1/ε - ln ε - ln K) . (12)

We observe a uniform and even asymptotic increase of ln P as ε→0.

Discussion
A probability will never be larger than unity. Because always P≤1 , not every positive value of ε is

allowed in (12). The use of the Stirling approach (2) is only justified for large values of n. The weaker



however the convergence of n is for k→ ∞ , the more influence there is from a long tail with small values
of n. So weak convergence introduces large errors in the resulting sum (12). Then entropy is a bad
measure for probability. The replacement of a sum by an integral can be expected to yield an error of
minor importance. But after all the strong and uniform decrease of ln P with increasing ε is evident:
probability increases as n(k) converges in a weaker way.

It is needless to say that a distribution of the type

n = c / (k0 + k) (13)

has the same asymptotic behavior for k >> k0 as (5). Zipf's law in a more general formulation is often
written as [9]

n = c / (k0 + k)(1+ε)  (14)

with, in a number of cases, a value 0 < ε < 1 and not ε = 0 . To some types of problems a more detailed
analysis than our own applies and therefore our entropy consideration will not always be conclusive. But
even then we see in (12) that ln P decreases strongly as ε increases so that large values of ε are improbable
just for reasons of entropy. The less we know about special mechanisms, the more likely it is that we
observe an asymptotic behavior with ε << 1.

In our derivation we introduced the summability criterion (6), which generated a power law (9).
Probably instead of (9) also other classes of weakly converging functions may occur. We saw already a
function n~1/k (ln k)α  with α > 1. The criterion (6) is not conclusive for functions n(k) with logarithmic
deviations from n~1/k , as we see. Is it possible to formulate a fully conclusive criterion? Alas it is not.
For every class of summable functions it is possible to find another class with a weaker convergence.
Correspondingly for every criterion one may formulate another one which is more sensitive. We give the
proof of this statement in the table.

 k
n(k) ∫  n dk ~ criterion:   lim    u < -1 with

    k→∞

1/kα 1/kα-1 u = ln n / ln k ; see (6)

1/k.(ln k)α 1/(ln k)α-1 u = ln (n.k) / ln (ln k)

1/k.(ln k).(ln(ln k))α 1/(ln(ln k))α-1 u = ln (n.k.ln k) / ln(ln(ln k))

…… …… ……

Table of functions n(k) with increasing weakness of summability and corresponding summability
criteria. Always α > 1. 

Extension of the table yields every desired weakness of the summability of n(k). But it is clear
that all functions n(k) approach in their asymptotics the one of n~1/k. It may be doubted whether any
criterion sharper than (6) would be of practical interest, when viewed in the light of empirical data. Would
one reach the accuracy to distinguish ln n = c - ln k - α ln(ln k) from ln n = c - ln k (c constant)?
Nevertheless our own argument with the power law (9) cannot be used to forbid other functions
approaching n~1/k , because a sharper summability criterion than (6) cannot be excluded.

Thus far our argument concerns the asymptotics for k→ ∞ . For the first few rank numbers still all
kinds of schemes are open. A relation like (14), with an additional parameter k0 , even contains a
somewhat larger probability P for ε << 1 than the simple one of (9). Every additional parameter in a
distribution however implies some structure in the problem. The more parameters there are, the more



structure and the less stochastic behavior. Therefore a problem without any structure at all and with a
maximum of entropy should contain no additional parameters. Fully unstructured situations should yield a
simple n~1/k (see (5)). This relation has indeed been observed in the first few rank numbers of the
distribution of population over large cities [6].

We conclude that indeed the weakest acceptable convergence of n(k) for k→ ∞ yields the most
probable distribution function. Therefore a tail in the distribution according to (5) is simply the limit case
of maximum probability under the restriction of summability. This result may be significant in many
stochastic situations where a large number of objects is distributed over an infinite rank of clusters,
provided that further restrictions are absent.

The presence of additional restrictions in the problem may have major consequences. In many
kinds of problems a more rapidly converging distribution is found, like the (exponential) Boltzmann
distribution in statistical mechanics. This however follows in the same way as (4) or (9), if in the
Lagrange multiplier method the additional condition is imposed that the total amount of energy in the
system is given (see the appendix):

K
Σ    nk Ek = E . (15)

           k=1

Our own argument concerns a situation without such a constraint. Additional conditions may strongly
change the whole picture.

Conclusion
Our final conclusion is that the hyperbolic law n(k) ~ 1/k has a general character, in spite of

special mechanisms. Those may be different in several situations, without much influence on the resulting
distribution. Zipf's law turns out to be simply the limit of maximum probability (entropy), in the case that
a large number of objects is distributed over an infinite sequence of clusters.

Appendix
We use the Lagrange multiplier method [16] in the derivation of (4), of (9) and of the Boltzmann

distribution (15).
Maximize ln P in (3) under the condition that N = n1 + … + nK is given. The gradients of ln P and

N in nk - space should be aligned (anti-)parallel. So ∂ ln P / ∂ nk = λ ∂ N / ∂ nk . The result is that
ln nk = -λ', or n1 = n2 = … = nK ; see (4).
To derive the power law (9) we maximize ln P in (3) under the conditions that again N is given,

but also that A in (8) has a finite value: ∂ ln P / ∂ nk = λ ∂ N / ∂ nk + µ ∂ A / ∂ nk . Here nk = λ' k -µ ; see (9).
To obtain the Boltzmann distribution we impose as a second condition that E = n1E1 + n2E2 + … +

nKEK is given (15). Now ∂ ln P / ∂ nk = λ ∂ N / ∂ nk + µ ∂ E / ∂ nk , so that ln nk = - λ' - µ Ek . With a proper
choice of the values of λ' and µ this constitutes a Boltzmann distribution.
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